Ulnar mammary syndrome (UMS) results from heterozygous variants in the TBX3 gene and impacts limb, tooth, hair, apocrine gland, and genitalia development. The expressivity of UMS is highly variable with no established genotype-phenotype correlations. TBX3 belongs to the Tbx gene family, which encodes transcription factors characterized by the presence of a T-box DNA-binding domain. We describe a fetus exhibiting severe upper limb defects and harboring the novel TBX3:c.400 C > T (p.P134S) variant inherited from the mother who remained clinically misdiagnosed until prenatal diagnosis. Literature revision was conducted to uncover the TBX3 clinical and mutational spectrum. Moreover, we generated a Drosophila humanized model for TBX3 to study the developmental consequences of the p.P134S as well as of other variants targeting different regions of the protein. Phenotypic analysis in flies, coupled with in silico modeling on the TBX3 variants, suggested that the c.400 C > T is UMS-causing and impacts TBX3 localization. Comparative analyses of the fly phenotypes caused by the expression of all variants, demonstrated that missense changes in the T-box domain affect more significantly TBX3 activity than variants outside this domain. To improve the clinicians' recognition of UMS, we estimated the frequency of the main clinical features of the disease. Core features often present pre-pubertally include defects of the ulna and/or of ulnar ray, hypoplastic nipples and/or areolas and, less frequently, genitalia anomalies in young males. These results enhance our understanding of the molecular basis and the clinical spectrum of UMS, shedding light on the functional consequences of TBX3 variants in a developmental context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.31440 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649972 | PMC |
Shenxian-Shengmai (SXSM) is a Chinese patent medicine used in the treatment of sick sinus syndrome (SSS). However, its active chemical compounds and the underlying molecular mechanisms remain unclear. In this study, we researched the underlying mechanisms of SXSM in treating SSS.
View Article and Find Full Text PDFCancer Med
October 2024
Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
Background: The highly homologous T-box transcription factors TBX2 and TBX3 are critical for embryonic development, and their overexpression in postnatal tissues contributes to a wide range of malignancies, including melanoma and rhabdomyosarcoma. Importantly, when TBX2 and TBX3 are depleted in cancers where they are overexpressed, the malignant phenotype is inhibited, and they have therefore been regarded as druggable targets. However, the time and costs associated with de novo drug development are challenging and result in drugs that are costly, especially for patients in low- and middle-income countries.
View Article and Find Full Text PDFCurr Biol
October 2024
Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA 02543, USA. Electronic address:
A critical question in biology is how new traits evolve, but studying this in wild animals remains challenging. Here, we probe the genetic basis of trait gain in sea robin fish, which have evolved specialized leg-like appendages for locomotion and digging along the ocean floor. We use genome sequencing, transcriptional profiling, and interspecific hybrid analysis to explore the molecular and developmental basis of leg formation.
View Article and Find Full Text PDFJ Cell Physiol
December 2024
Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy.
Ulnar mammary syndrome (UMS) results from heterozygous variants in the TBX3 gene and impacts limb, tooth, hair, apocrine gland, and genitalia development. The expressivity of UMS is highly variable with no established genotype-phenotype correlations. TBX3 belongs to the Tbx gene family, which encodes transcription factors characterized by the presence of a T-box DNA-binding domain.
View Article and Find Full Text PDFInt J Legal Med
September 2024
Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
Sudden unexplained death (SUD) can affect apparently healthy adolescents and young adults with no prior clinical symptoms and no clear diagnostic findings at autopsy. Although primary cardiac arrhythmias have been shown to be the direct cause of death in the majority of SUD cases, the genetic predisposition contributing to SUD remains incompletely understood. Currently, molecular autopsy is considered to be an effective diagnostic tool in the multidisciplinary management of SUD, but the analysis focuses mainly on the coding region and the significance of many identified variants remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!