Objective: Mitochondria are implicated in regulation of the innate immune response. We hypothesized that abnormalities in interferon signaling may contribute to pathophysiology in patients with primary mitochondrial disease (PMD).

Methods: Expression of interferon stimulated genes (ISGs) was measured by real-time polymerase chain reaction (PCR) in whole blood samples from a cohort of patients with PMD.

Results: Upregulated ISG expression was observed in a high proportion (41/55, 75%) of patients with PMD on at least 1 occasion, most frequently IFI27 upregulation, seen in 50% of the samples. Some patients had extremely high IFI27 levels, similar to those seen in patients with primary interferonopathies. A statistically significant correlation was observed between elevated IFI27 gene expression and PMD, but not between IFI27 and secondary mitochondrial dysfunction, suggesting that ISG upregulation is a biomarker of PMD. In some patients with PMD, ISG abnormalities persisted on repeat measurement over several years, indicative of ongoing chronic inflammation. Subgroup analyses suggested common ISG signatures in patients with similar mitochondrial disease mechanisms and positive correlations with disease severity among patients with identical genetic diagnoses.

Interpretation: Dysregulated interferon signaling is frequently seen in patients with PMD suggesting that interferon dysregulation is a contributor to pathophysiology. This may indicate a role for repurposing of immunomodulatory therapies for the treatment of PMDs by targeting interferon signaling. ANN NEUROL 2024;96:1185-1200.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.27081DOI Listing

Publication Analysis

Top Keywords

mitochondrial disease
12
interferon signaling
12
patients pmd
12
patients
9
interferon stimulated
8
gene expression
8
primary mitochondrial
8
patients primary
8
interferon
6
pmd
5

Similar Publications

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.

View Article and Find Full Text PDF

The survival of B cells is compromised in kidney disease.

Nat Commun

December 2024

Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Antibody-mediated protection against pathogens is crucial to a healthy life. However, the recent SARS-CoV-2 pandemic has shown that pre-existing comorbid conditions including kidney disease account for compromised humoral immunity to infections. Individuals with kidney disease are not only susceptible to infections but also exhibit poor vaccine-induced antibody response.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!