[Research progress in the synthesis of 3'- and 6'-sialactose by ].

Sheng Wu Gong Cheng Xue Bao

Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230000, Anhui, China.

Published: September 2024

Human milk oligosaccharides (HMOs) are a structurally complex group of unbound polysaccharides, representing the third-largest solid component in breast milk. They play a crucial role in the intestinal health and immune system development of infants. Sialylated HMOs, including 3'-sialactose (3'-SL) and 6'-sialactose (6'-SL), are major components of HMOs, playing significant roles in immune regulation, anti-inflammatory processes, and promotion of probiotic growth. Currently, the cost-effective production of high-value sialactose by microbial fermentation with readily available raw materials has become a research hotspot due to the high nutritional value and potential applications of sialylated HMOs in infant food. This paper summarizes the functions and biosynthesis of 3'-SL and 6'-SL. Furthermore, it reviews the research progress in the synthesis of sialactose by , offering valuable insights for future industrial production.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.230808DOI Listing

Publication Analysis

Top Keywords

progress synthesis
8
sialylated hmos
8
[research progress
4
synthesis 3'-
4
3'- 6'-sialactose
4
6'-sialactose human
4
human milk
4
milk oligosaccharides
4
hmos
4
oligosaccharides hmos
4

Similar Publications

Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

Expression profiling of circular RNAs in sepsis-induced acute gastrointestinal injury: insights into potential biomarkers and mechanisms.

Cytotechnology

April 2025

Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, North Dongmen Road, Luohu District, Shenzhen, 518020 Guangdong China.

This study aimed to investigate the role of circular RNAs (circRNAs) in sepsis-induced acute gastrointestinal injury (AGI), focusing on their potential as biomarkers and their involvement in disease progression. Peripheral blood samples from 14 patients with sepsis-induced AGI and healthy volunteers were collected. RNA sequencing was performed to profile circRNA and miRNA expression.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function.

View Article and Find Full Text PDF

This study aimed to explore the mechanisms underlying T-cell differentiation in asthma. Flow cytometry was performed to detect Th cells. LC-MS/MS was performed to assess lipid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!