In this work, we designed a straightforward and highly reproducible synthetic methodology to prepare Ru-Pt composites. We report a significant improvement in the electrocatalytic performance upon compositing Ru with a very trace amount of Pt. In particular, Ru nanoparticles were derived from a Ru-Prussian blue analogue (Ru PBA) and composited with (0.1, 0.5, and 1 mmol) metallic platinum following an optimized chemical reduction method. Interestingly, the composite with 0.5 mmol of Pt (Ru@C/Pt) required low overpotentials of 32 and 140 mV to achieve current densities of 10 and 100 mA cm, respectively. Furthermore, Ru@C/Pt exhibited a smaller Tafel slope (26 mV dec), robust durability with 50 hours of long-term stability and a higher turnover frequency (TOF: 5.6 s@) than commercial Pt/C (TOF: 4.1 s@). First-principles calculations using density functional theory (DFT) revealed that the existence of Pt islands on the Ru nanoparticles weakened the strength of the adsorption of hydrogen at the Ru interstitials due to electrostatic repulsion caused by charge retention at Ru atoms near the corner of the islands, leading to rapid dissociation of hydrogen. This created a significant impact on the improvement of the electrocatalytic HER activity of the Ru@C/Pt electrocatalyst. It appears that restricting the concentration of Pt to trace amounts is a necessary condition for the observed catalytic efficiency, as the catalytic efficiency decreases with an increasing island size due to stronger binding of atomic hydrogen on peripheral Pt atoms and stabilization of adsorbed atomic hydrogen caused by softening of phonon modes with increasing island size. This study opens up a novel avenue for the exploration of highly efficient electrocatalysts for hydrogen evolution reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt02220c | DOI Listing |
J Clin Med
January 2025
Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy.
: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Computer-Aided Design and Test (CADT) Research Group, McMaster University, Hamilton, ON L8S 4L8, Canada.
A parallelized field-programmable gate array (FPGA) architecture is proposed to realize an ultra-fast, compact, and low-cost dual-channel ultra-wideband (UWB) pulsed-radar system. This approach resolves the main shortcoming of current FPGA-based radars, namely their low processing throughput, which leads to a significant loss of data provided by the radar receiver. The architecture is integrated with an in-house UWB pulsed radar operating at a sampling rate of 20 gigasamples per second (GSa/s).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, 150040, Hei-longjiang, China.
The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; Department of Physics, Kaunas University of Technology, Studentų St. 50, LT-51423 Kaunas, Lithuania. Electronic address:
Surface-enhanced Raman scattering (SERS) show great potential for rapid and highly sensitive detection of trace amounts of contamination from the environment in the surface aquatic ecosystem. The widespread use of antibiotics has resulted in serious degradation of the water environment in the past few years, and their substantial residual contamination of wastewater has a harmful effect on ecosystems, which is associated with the development of antibiotic-resistant bacterial strains. However, in this study, a novel approach of core-shell nanoparticles GNRs@1,4-BDT@Ag was used for the quantitative measurement of the concentration of antibiotics in wastewater solutions using the SERS technique coupled with computational methods.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Tailored design of organic linkers or metal nodes can introduce desirable functionalities into metal-organic cages (MOCs), significantly expanding their potential applications. In this study, we present a viable approach for engineering acyl-type metal nodes to create interior oxygen-rich sites within MOCs, enabling specific recognition of metal ions, including radioactive contaminants, while maintaining the structural integrity of the MOCs. A novel MOC featuring a uranyl-sealed calix[4]resorcinarene (C[4]R)-based multisite cavity, referred to as UOC, is synthesized as a prototype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!