Application of Silk Light Chain on a Graphene Composite Surface: A Molecular Dynamics and Electrochemical Experiment.

ACS Appl Mater Interfaces

Department of Mechanical Engineering, Korea University, 02841 Seoul, Republic of Korea.

Published: October 2024

The surface functionalization of pristine graphene (PG) with beneficial biocomposites is important for biomedical and tissue engineering. This study introduces silk light chain as novel biocomposites to increase the biocompatibility of PG. We explored the supramolecular structures of the silk heavy and light chains. Through molecular dynamics, we compared and analyzed the structural effects and binding mechanisms of these domains in their interaction with PG. Our results highlighted a significant hydrophobic interaction between the silk light chain and PG, without structural collapse. The supramolecular structure of the silk light chain was identified by analyzing the amino acids bound to PG. Moreover, using the silk light chain, the hydrophobic surface of PG has changed to a hydrophilic surface, and the silk light-chain-PG electron transfer rate was evaluated for the graphene congeners: graphene oxide (GO) and reduced graphene oxide. Therefore, we are confident that the dispersibility and biocompatibility of PG can be increased using silk light chains, which will contribute to broadening the field of application of PG-based materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c15705DOI Listing

Publication Analysis

Top Keywords

silk light
24
light chain
20
molecular dynamics
8
light chains
8
graphene oxide
8
light
7
silk
7
chain
5
graphene
5
application silk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!