Hydrologic reconstructions from North America are largely unknown for the Middle Miocene. Examination of fungal palynomorph assemblages coupled with traditional plant-based palynology permits delineation of local, as opposed to regional, climate signals and provides a baseline for study of ancient fungas. Here, the Fungi in a Warmer World project presents paleoecology and paleoclimatology of 351 fungal morphotypes from 3 sites in the United States: the Clarkia Konservat-Lagerstätte site (Idaho), the Alum Bluff site (Florida), and the Bouie River site (Mississippi). Of these, 83 fungi are identified as extant taxa and 41 are newly reported from the Miocene. Combining new plant-based paleoclimatic reconstructions with funga-based paleoclimate reconstructions, we demonstrate cooling and hydrologic changes from the Miocene climate optimum to the Serravallian. In the southeastern United States, this is comparable to that reconstructed with pollen and paleobotany alone. In the northwestern United States, cooling is greater than indicated by other reconstructions and hydrology shifts seasonally, from no dry season to a dry summer season. Our results demonstrate the utility of fossil fungi as paleoecologic and paleoclimatic proxies and that warmer than modern geological time intervals do not match the "wet gets wetter, dry gets drier" paradigm. Instead, both plants and fungi show an invigorated hydrological cycle across mid-latitude North America.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420851PMC
http://dx.doi.org/10.34133/research.0481DOI Listing

Publication Analysis

Top Keywords

united states
16
middle miocene
8
fossil fungi
8
north america
8
fungi
5
summer-wet hydrologic
4
hydrologic cycle
4
cycle middle
4
miocene
4
united
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!