Lamins A and C are components of the lamina at the nuclear periphery and associate with heterochromatin. A distinct, relatively mobile pool of lamin A/C in the nuclear interior associates with euchromatic regions and with lamin-associated polypeptide 2α (LAP2α). Here we show that phosphorylation-dependent impairment of lamin assembly had no effect on its chromatin association, while LAP2α depletion was sufficient to increase chromatin association of lamins. This suggests that complex interactions between LAP2α, chromatin, and lamins regulate lamin chromatin binding. Both the C terminus of LAP2α and its N-terminal LAP2-Emerin-MAN1 (LEM) domain, mediating interaction with lamin A/C indirectly via barrier-to-autointegration factor (BAF), are required for binding to lamins. The N-terminal LEM-like domain of LAP2α, but not its LEM domain, mediates chromatin association of LAP2α and requires LAP2α dimerization via its C terminus. Our data suggest that formation of several LAP2α-, lamin A/C-, and BAF-containing complexes in the nucleoplasm and on chromatin affects lamin chromatin association.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417337PMC
http://dx.doi.org/10.1016/j.isci.2024.110869DOI Listing

Publication Analysis

Top Keywords

chromatin association
16
lamin chromatin
12
chromatin binding
8
lap2α
8
interactions lap2α
8
chromatin
8
chromatin lamins
8
lamin a/c
8
association lap2α
8
lem domain
8

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that inflicts the elderly worldwide. Recent studies revealed the association of abnormal methylomic alterations in AD. However, a systematic and comprehensive study is needed to investigate the effects of methylomic changes on the molecular networks underpinning AD, in particular, in brain regions most vulnerable to AD neuropathology.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Background: Recent studies suggest genome-wide-association-studies (GWAS) loci confer their effects on microglia in late-onset Alzheimer's disease (LOAD) brains. Relatively fewer studies have investigated the effects of other genome-wide significant loci (p<5e) using human neurons.

Method: GWAS itself cannot directly identify causal variant-(effector)gene-pairs as GWAS only reports the sentinel variant at a given locus.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Lawrence Chen Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Background: Abnormal tau protein accumulation selectively affects distinct brain regions and specific neuron and glia populations in tau-related dementias like Alzheimer's disease (AD), frontotemporal dementia (FTD, Pick's disease type), and Progressive supranuclear palsy (PSP). The regulatory mechanisms governing cell-type vulnerability remain unclear.

Method: In a cross-disorder single-nucleus analysis, we examined 663,896 nuclei, assessing chromatin accessibility in three brain regions (motor cortex, visual cortex and insular cortex) across PSP, AD, and FTD in 40 individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!