Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Employing quantitative structure-activity relationship (QSAR)/ quantitative structure-property relationship (QSPR) models, this study explores the application of fullerene derivatives as nanocarriers for breast cancer chemotherapy drugs. Isolated drugs and two drug-fullerene complexes (i.e., drug-pristine C fullerene and drug-carboxyfullerene C-COOH) were investigated with the protein CXCR7 as the molecular docking target. The research involved over 30 drugs and employed Pearson's hard-soft acid-base theory and common QSAR/QSPR descriptors to build predictive models for the docking scores. Energetic descriptors were computed using quantum chemistry at the density functional-based tight binding DFTB3 level. The results indicate that drug-fullerene complexes interact more with CXCR7 than isolated drugs. Specific binding sites were identified, with varying locations for each drug complex. Predictive models, developed using multiple linear regression and IBM Watson artificial intelligence (AI), achieved mean absolute percentage errors below 12%, driven by AI-identified key variables. The predictive models included mainly quantitative descriptors collected from datasets as well as computed ones. In addition, a water-soluble fullerene was used to compare results obtained by DFTB3 with a conventional density functional theory approach. These findings promise to enhance breast cancer chemotherapy by leveraging fullerene-based drug nanocarriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420546 | PMC |
http://dx.doi.org/10.3762/bjnano.15.95 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!