Polymers of intrinsic microporosity (PIMs) are a class of promising gas separation materials due to their high membrane permeabilities and reasonable selectivities. When processed into thin film composite (TFC) membranes, their high gas throughput aligns closely with industrial requirements, but they are prone to physical aging and plasticization effects. TFC membranes based on the prototypical PIM-1 and its carboxylated derivative cPIM-1 exhibit temperature-dependent gas permeation behavior, which has not been extensively studied before. In single CO permeation tests, measurable physical aging occurred when the temperature was raised to 55 °C within a period of 90 min, and the aging rate accelerated as temperature was raised further. TFC membranes prepared from cPIM-1 exhibited a faster aging rate compared to PIM-1 at the same temperature. The decreased permeance could be at least partially recovered through a 5 day methanol vapor treatment. In mixed gas experiments, all membranes showed decreased permselectivities at elevated temperatures. The plasticization pressure of TFC membranes occurred at around 1 bar of CO partial pressure, independent of temperature. Significant plasticization was particularly evident for cPIM-1 TFC membranes under CO/CH conditions with increasing temperature, which resulted in increased gas permeance for both components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417989 | PMC |
http://dx.doi.org/10.1021/acs.iecr.4c02230 | DOI Listing |
Polymers (Basel)
December 2024
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia.
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFWater Res
December 2024
Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan. Electronic address:
Nanofiltration (NF) offers a scalable and energy-efficient method for lithium extraction from salt lakes. However, the selective separation of lithium from magnesium, particularly in brines with high magnesium concentrations, remains a significant challenge due to the close similarity in their hydrated ionic radii. The limited Li/Mgselectivity of current NF membranes is primarily attributed to insufficient control over pore size and surface charge.
View Article and Find Full Text PDFCancer Immunol Immunother
December 2024
Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Colorectal cancer (CRC) is the most common digestive cancer in the world. Microsatellite stability (MSS) and microsatellite instability (MSI-high) are important molecular subtypes of CRC closely related to tumor occurrence and progression and immunotherapy efficacy. The presence of CD8 CXCR5 follicular cytotoxic T (T) cells is strongly associated with autoimmune disease and CD8 effector function.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China.
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux () of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!