Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review.

Bioact Mater

Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany.

Published: January 2025

This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418067PMC
http://dx.doi.org/10.1016/j.bioactmat.2024.09.005DOI Listing

Publication Analysis

Top Keywords

articular cartilage
12
advancements hydrogel
8
hydrogel design
8
design articular
8
cartilage regeneration
8
cartilage
5
design
4
regeneration comprehensive
4
comprehensive review
4
review review
4

Similar Publications

Background: Osteoarthritis (OA) is the most prevalent joint disorder globally, causing a substantial and increasing socioeconomic burden. Kojic acid (KA) presented potential biological roles in regulating inflammation and autophagy, which was implicated in OA progression. However, its role in chondrocytes and OA has not been reported.

View Article and Find Full Text PDF

Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.

View Article and Find Full Text PDF

Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.

Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.

View Article and Find Full Text PDF

Advancements in Cartilage Tissue Engineering: A Focused Review.

J Biomed Mater Res B Appl Biomater

January 2025

Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio, USA.

Osteoarthritis (OA) is a prevalent joint disorder that is characterized by the degeneration of articular cartilage in synovial joints. Most of the current treatment options for this disorder tend to focus on symptom management rather than addressing the underlying progression of the disease. Cartilage tissue engineering has emerged as a promising approach to address the limitations of current OA treatments, aiming to regenerate cartilage and restore the natural function of affected joints.

View Article and Find Full Text PDF
Article Synopsis
  • Knee osteoarthritis (OA) is a slow progression of cartilage damage leading to pain and difficulties in movement, with standard pain medications not effective for everyone.
  • A systematic review analyzed 10 studies from 2016-2023 on the use of platelet-rich plasma (PRP) injections for reducing OA pain compared to a placebo.
  • While some studies showed significant improvement in symptoms for PRP-treated patients, results were inconsistent, indicating the need for more research to clarify PRP's effectiveness and consider other factors like follow-up times and patient conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!