As a thriving artificial material, covalent organic frameworks (COFs), boasting inherent structural designability and functional adaptability, and with compositions akin to biological macromolecules, have emerged as a rising star in the field of material science. However, the progression of COFs is significantly impeded by the arduous and intricate preparation procedures of novel building blocks, as well as the inefficient development process of new reactions. An efficient, uncomplicated, and versatile functionalization approach, which has the potential to not only facilitate customized preparation of COFs based on application demands but also enable precise performance control, has become a focal point of research. The formulation of multi-functional COFs through efficient and cost-effective methods poses a critical challenge for the practical application of COFs. This review aims to present the preparation of COFs by amalgamating rigid molecular chemistry with flexible supramolecular host-guest chemistry, adopting a "couple hardness with softness" strategy to meticulously construct intelligent covalent organic polyrotaxanes (COPRs) using conventional reactions. Herein, novel building blocks can be acquired by amalgamating existing macrocycle complexes with framework blocks. The amalgamation of supramolecular chemistry bolsters the capabilities to generate, sense, respond, and amplify distinctive signals, thereby expediting the advancement of multifaceted materials with sophisticated structures. Concurrently, the infusion of supramolecular force endows COPRs with exceptional performance, facilitating multi-mode collaborative antibacterial therapy. This comprehensive review not only promotes the efficient utilization of resources but also stimulates the rapid advancement of framework materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420781PMC
http://dx.doi.org/10.1039/d4ra05381hDOI Listing

Publication Analysis

Top Keywords

host-guest chemistry
8
organic polyrotaxanes
8
polyrotaxanes coprs
8
covalent organic
8
novel building
8
building blocks
8
preparation cofs
8
cofs
6
bridging host-guest
4
chemistry
4

Similar Publications

Coordination cages with specific properties and functionalities are utilized as reaction vessels for the desired chemical transformation of substrates. The symmetry and inherent cavity of coordination cages can influence the host-guest interactions and the reaction outcome in their confined space. However, the impact of the cage shape on different transformations remains unclear.

View Article and Find Full Text PDF

Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.

View Article and Find Full Text PDF

Building a Highly Stable Red/Near Infrared Afterglow Library with Highly Branched Structures.

Adv Mater

March 2025

Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China.

Achieving organic red/near infrared (NIR) phosphorescence at high temperatures is theoretically challenging because of the severe nonradiative transitions of excited triplet states with low energy gaps. This study realizes bright and persistent red/NIR afterglow with excellent high-temperature resistance up to 413 K via highly efficient (≈100%) phosphorescence resonance energy transfer (PRET) from rationally designed branched phosphorescence luminogens as energy donors to red/NIR dyes as acceptors, coupled with optimized aggregated structures. According to systematic investigations, the abundant internal cavities formed by the highly branched luminogens in solid states ensure dye loading and space limitation, which can considerably suppress nonradiative transitions at high temperatures, promoting a persistent red/NIR afterglow with excellent stability.

View Article and Find Full Text PDF

Imaging molecular structures and interactions by enhanced confinement effect in electron microscopy.

Nat Commun

March 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.

Atomic imaging of molecules and intermolecular interactions are of great significance for a deeper understanding of the basic physics and chemistry in various applications, but it is still challenging in electron microscopy due to their thermal mobility and beam sensitivity. Confinement effect and low-dose imaging method may efficiently help us achieve stable high-resolution resolving of molecules and their interactions. Here, we propose a general strategy to image the confined molecules and evaluate the strengths of host-guest interactions in three material systems by low-dose electron microscopy.

View Article and Find Full Text PDF

Mobility Control of Mechanical Bonds to Modulate Energy Dissipation in Mechanically Interlocked Networks.

J Am Chem Soc

March 2025

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Mechanically interlocked networks (MINs) with dense mechanical bonds can amplify the dynamic behaviors of the mechanical bonds to exhibit decent mechanical properties. Energy dissipation resulting from mechanical bond motion is essential for improving toughness, yet effective strategies to optimize this process remain underexplored. Here, by designing mechanical bond models with controllable mobility, we establish a fortification strategy for the two key factors governing energy dissipation, host-guest recognition and sliding friction, thereby enabling mechanical property enhancement of mechanically interlocked materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!