Mammalian riboswitches that can regulate transgene expression via RNA-small molecule interaction have promising applications in medicine and biotechnology, as they involve no protein factors that can induce immunogenic reactions and are not dependent on specially engineered promoters. However, the lack of cell-permeable and low-toxicity small molecules and cognate aptamers that can be exploited as riboswitches and the modest switching performance of mammalian riboswitches have limited their applications. In this study, we systematically optimized the design of a riboswitch that regulates exon skipping via an RNA aptamer that binds ASP2905. We examined two design strategies to modulate the stability of the aptamer base stem that blocks the 5' splice site to fine-tune the riboswitch characteristics. Furthermore, an optimized riboswitch was used to generate a mouse embryonic stem cell line that can be chemically induced to differentiate into myogenic cells by activating expression and a human embryonic kidney cell line that can be induced to trigger apoptosis by activating expression. The results demonstrate the tight chemical regulation of transgenes in mammalian cells to control their phenotype without exogenous protein factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494654 | PMC |
http://dx.doi.org/10.1021/acssynbio.4c00295 | DOI Listing |
Proc Natl Acad Sci U S A
December 2024
Department of Biochemistry, Brandeis University, Waltham, MA 02453.
The bacterial pathogen forms multicellular communities known as biofilms in which cells are held together by an extracellular matrix principally composed of repurposed cytoplasmic proteins and extracellular DNA. These biofilms assemble during infections or under laboratory conditions by growth on medium containing glucose, but the intracellular signal for biofilm formation and its downstream targets were unknown. Here, we present evidence that biofilm formation is triggered by a drop in the levels of the second messenger cyclic-di-AMP.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA.
Riboswitches are highly structured RNA regulators of gene expression. Although found in all three domains of life, they are particularly abundant and widespread in bacteria, including many human pathogens, thus making them an attractive target for antimicrobial development. Moreover, the functional versatility of riboswitches to recognize a myriad of ligands, including ions, amino acids, and diverse small-molecule metabolites, has enabled the generation of synthetic aptamers that have been used as molecular probes, sensors, and regulatory RNA devices.
View Article and Find Full Text PDFMicrobiology (Reading)
October 2024
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments.
View Article and Find Full Text PDFACS Synth Biol
October 2024
Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna, Okinawa 9040495, Japan.
Mammalian riboswitches that can regulate transgene expression via RNA-small molecule interaction have promising applications in medicine and biotechnology, as they involve no protein factors that can induce immunogenic reactions and are not dependent on specially engineered promoters. However, the lack of cell-permeable and low-toxicity small molecules and cognate aptamers that can be exploited as riboswitches and the modest switching performance of mammalian riboswitches have limited their applications. In this study, we systematically optimized the design of a riboswitch that regulates exon skipping via an RNA aptamer that binds ASP2905.
View Article and Find Full Text PDFMethods Mol Biol
September 2024
Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!