Purpose: To compare mechanical, optical, and physical properties of denture base materials fabricated with various 3D printing systems to reference milled and conventionally heat-processed denture base materials.
Materials And Methods: Specimens of denture base materials were either 3D-printed (DLP in-office printer, CLIP laboratory printer, or material jetting laboratory printer), milled, or heat processed. 3-point bend flexural strength testing was performed after 50 hours of water storage following 1hour of drying (dry testing) or in 37°C water (wet testing). Fracture toughness was performed with a notched beam specimen after 7 days of water storage and tested dry. The translucency parameter was measured with 2 mm thick specimens. Stain resistance was measured as color change following 14 days of storage in 37°C coffee. Water sorption was measured following 7 days of storage in 37°C distilled water.
Results: For dry testing, all but one of the 3D-printed materials attained higher or equivalent flexural strength as the reference materials. For wet testing, all 3D-printed materials attained higher or equivalent strength as the reference materials and dry-tested materials. For 3D-printed materials, wet testing increased displacement before fracture whereas it decreased displacement for the reference materials. Only two of the 3D-printed materials had similar fracture toughness as the reference materials. One of the 3D-printed materials was more translucent and one was more opaque than the reference materials. Only one of the 3D-printed materials absorbed more water than the reference materials.
Conclusion: 3D-printed denture base materials have mostly equivalent mechanical, optical, and physical properties to conventional and milled denture base materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jopr.13955 | DOI Listing |
J Prosthodont Res
January 2025
Department of Comprehensive Dentistry, UT Health San Antonio, San Antonio, USA.
Purpose: To determine the effects of K18 quaternary ammonium methacryloxy silane (QAS) on tissue conditioner materials and their antimicrobial properties.
Methods: 30% K18 QAS in methyl methacrylate (MMA; K18-MMA; 0%, 15%, and 20% w/w) was incorporated into a commercial tissue conditioner (Coe comfort). The degree of curing (Shore A hardness), hydrophilicity (contact angle), flow, liquid sorption, mass loss, and antimicrobial properties of Streptococcus mutans, Streptococcus sanguinis, and Candida albicans were determined.
J Prosthodont Res
January 2025
Department of Prosthodontics, Faculty of Dentistry, Ibb University, Ibb, Yemen.
Purpose: This systematic review evaluated the effect of different printing orientations on the physical-mechanical properties and accuracy of resin denture bases and related specimens.
Study Selection: Utilizing PRISMA 2020 guidelines, a comprehensive search of PubMed, Web of Science, Cochrane, and Scopus databases was conducted until June 2024. Included studies examined the accuracy, volumetric changes, and mechanical or physical properties of 3D-printed denture bases in various orientations.
J Dent
January 2025
Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland. Electronic address:
Objective: This study aimed to investigate the resin compounds from CAD-CAM 3D-printed denture resins, focusing on the identification and classification of free monomers and other components. The primary objective was to determine the chemical profile of these 3D-prinding resin materials.
Methods: Four 3D-printed denture resins, two base materials (1: DentaBASE, Asiga Ltd.
Cureus
December 2024
Department of Oral and Maxillofacial Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, JPN.
This study aimed to reproduce a complete wooden plate denture, which was the first in the world to retain suction under negative pressure, using the same materials and methods from 400 years ago (i.e., the Edo period) to verify its masticatory performance.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Prosthodontics, Faculty of Dentistry, University of Abant İzzet Baysal, 14030 Bolu, Turkey.
This study evaluated the color stability, surface roughness, and hardness of 3D-printed and heat-polymerized denture materials. A total of 90 samples were prepared, with equal numbers of 3D-printed and heat-polymerized disks. The initial hardness, surface roughness, and color values of the samples were measured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!