The formation of black odour water is primarily attributed to the elevated concentration of organic pollutants, along with an excessive amount of nitrogen and phosphorus, ultimately leading to an anoxic aquatic environment. The water temperature influence mechanism on black-odorous water restoration by microporous aeration is still lacking depth study. This paper selected (15-18) ℃ (spring and autumn), (22-25) ℃ (summer), (8-11) ℃ (winter) as temperature conditions, and investigated temperature influence on nitrogen reduction. Researches showed that: (1) The removal rates of COD, NH-N and TN were significantly positively correlated with temperature (r = 0.99, 0.96, 0.97), the lowest removal rates were 83.16%, 95.68%, 58.7% ((8-11) ℃), the highest values were 92.67%, 98.27%, 70.96% ((22-25) ℃), respectively. (2) At a temperature range of 22-25°C, the microbial community exhibited the highest levels of abundance, diversity, and uniformity. Notably, dominated this temperature range with a relative abundance of 79.72%. Furthermore, temperature positively correlated with the majority of dominant bacterial species, suggesting that conditions at 22-25°C are highly conducive to the growth of most bacterial communities. Among these, , , and , which possess key functions in denitrification and nitrogen removal, displayed significantly higher abundances. It explains the positive correlation between temperature and removal rates of COD, TN and NH-N from microbial population's perspective. Thus, the best temperature for repairing black-smelly water is (22-25) ℃. This study provides technical reference for mechanism research and practical application of microporous aeration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2024.2405665 | DOI Listing |
Ecotoxicol Environ Saf
November 2024
Research Centre for Occupation and Environment Medicine, Collaborative Innovation Centre for Medical Equipment, Key Laboratory of Biological Damage Effect and Protection, Luoyang 471031, PR China.
Environ Technol
September 2024
School of Architecture & Civil Engineering, Xi'an University of Science & Technology, Xi'an, People's Republic of China.
ACS Omega
August 2024
Department of Chemistry, 578 South Shaw Lane, Chemistry Building, Michigan State University, East Lansing, Michigan 48824-1322, United States.
The microstructure, Vickers microhardness, and electrochemical properties of an additive manufactured titanium alloy, Ti-5553 (Ti-5Al-5Mo-5V-3Cr wt %), are reported on. The alloy specimens were fabricated by selective laser melt processing. The surface morphology and electrochemical properties of the as-processed and surface-pretreated (abraded and polished) Ti-5553 specimens were investigated.
View Article and Find Full Text PDFSoft Matter
July 2024
Department of Mechanical Engineering, Imperial College London, UK.
This study presents a rigorous mechanical characterisation investigation on milk chocolate with varying porosities, at different temperatures and strain rate levels. Uniaxial compression tests at temperatures varying from 20 °C to 30 °C were performed to measure the bulk properties of chocolate as a function of porosity and temperature. Fracture experiments were also conducted to compute the fracture energy at temperature levels between 20 °C and 30 °C for all tested samples.
View Article and Find Full Text PDFBioresour Technol
August 2023
Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon 21985, South Korea; Department of Green Chemistry and Technology, Ghent University, and Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent 9000, Belgium. Electronic address:
Combining multiple bioprocesses in a single membrane-aerated biofilm reactor (MABR) unit for wastewater treatment is an emerging research focus. This study investigated the feasibility of coupling thiosulfate-driven denitrification (TDD) with partial nitrification and anammox (PNA) in a MABR for the treatment of ammonium-containing wastewater. The integrated bioprocess was tested over a continuous operation period (>130 d) in two MABRs: one with a polyvinylidene fluoride membrane (MABR-1), and the other with micro-porous aeration tubes covered with non-wovenpolyester fabrics (MABR-2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!