A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A clustering tool for generating biological geometries for computational modeling in radiobiology. | LitMetric

A clustering tool for generating biological geometries for computational modeling in radiobiology.

Phys Med Biol

University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143, United States of America.

Published: October 2024

To develop a computational tool that converts biological images into geometries compatible with computational software dedicated to the Monte Carlo simulation of radiation transport (TOPAS), and subsequent biological tissue responses (CompuCell3D). The depiction of individual biological entities from segmentation images is essential in computational radiobiological modeling for two reasons: image pixels or voxels representing a biological structure, like a cell, should behave as a single entity when simulating biological processes, and the action of radiation in tissues is described by the association of biological endpoints to physical quantities, as radiation dose, scored the entire group of voxels assembling a cell.The tool is capable of cropping and resizing the images and performing clustering of image voxels to create independent entities (clusters) by assigning a unique identifier to these voxels conforming to the same cluster. The clustering algorithm is based on the adjacency of voxels with image values above an intensity threshold to others already assigned to a cluster. The performance of the tool to generate geometries that reproduced original images was evaluated by the dice similarity coefficient (DSC), and by the number of individual entities in both geometries. A set of tests consisting of segmentation images of cultured neuroblastoma cells, two cell nucleus populations, and the vasculature of a mouse brain were used.The DSC was 1.0 in all images, indicating that original and generated geometries were identical, and the number of individual entities in both geometries agreed, proving the ability of the tool to cluster voxels effectively following user-defined specifications. The potential of this tool in computational radiobiological modeling, was shown by evaluating the spatial distribution of DNA double-strand-breaks after microbeam irradiation in a segmentation image of a cell culture.This tool enables the use of realistic biological geometries in computational radiobiological studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563033PMC
http://dx.doi.org/10.1088/1361-6560/ad7f1dDOI Listing

Publication Analysis

Top Keywords

computational radiobiological
12
biological
8
biological geometries
8
geometries computational
8
segmentation images
8
radiobiological modeling
8
number individual
8
individual entities
8
entities geometries
8
geometries
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!