This study investigated the impacts of sulfamethazine (SMZ) and oxytetracycline (OTC) antibiotics on the marine microalgae Nitzschia closterium and its release of volatile halocarbons (VHCs), which contribute to ozone depletion and climate change. High concentrations of SMZ and OTC suppressed cell density, reduced chlorophyll a content, and hindered Fv/Fm elevation in N. closterium, indicating its growth was inhibited. The exposure of N. closterium to antibiotics led to increased reactive oxygen species (ROS), reduced soluble protein content, and heightened catalase (CAT) activity, indicative of increased oxidative stress. This stress increased the release of three VHCs (CHBrCl, CHBrCl, and CHBr). Ship-borne experiments showed that high phytoplankton biomass was linked to high VHC release. Notably, the production and release of VHCs were significantly higher in the high-concentration antibiotic group (100 μg/L) than the low-concentration group (0.1 μg/L). These findings suggested that antibiotics induce excess ROS in algal cells, stimulating VHC production and release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2024.106754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!