A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GFANC-RL: Reinforcement Learning-based Generative Fixed-filter Active Noise Control. | LitMetric

GFANC-RL: Reinforcement Learning-based Generative Fixed-filter Active Noise Control.

Neural Netw

Digital Signal Processing Lab, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.

Published: December 2024

The recent Generative Fixed-filter Active Noise Control (GFANC) method achieves a good trade-off between noise reduction performance and system stability. However, labelling noise data for training the Convolutional Neural Network (CNN) in GFANC is typically resource-consuming. Even worse, labelling errors will degrade the CNN's filter-generation accuracy. Therefore, this paper proposes a novel Reinforcement Learning-based GFANC (GFANC-RL) approach that omits the labelling process by leveraging the exploring property of Reinforcement Learning (RL). The CNN's parameters are automatically updated through the interaction between the RL agent and the environment. Moreover, the RL algorithm solves the non-differentiability issue caused by using binary combination weights in GFANC. Simulation results demonstrate the effectiveness and transferability of the GFANC-RL method in handling real-recorded noises across different acoustic paths..

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106687DOI Listing

Publication Analysis

Top Keywords

reinforcement learning-based
8
generative fixed-filter
8
fixed-filter active
8
active noise
8
noise control
8
gfanc-rl reinforcement
4
learning-based generative
4
noise
4
control generative
4
gfanc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!