This study evaluated the use of a protein-polysaccharide gel (PGEL) as a muffin ingredient, and its effect on the nutritional, textural, and gut microbiome profiles. PGEL was generated by complex coacervation with Pea protein and Gum Arabic. A mixture design was performed with different flour, lipids, and PGEL proportions, where Tx9 (26 % PGEL) showed improved physicochemical characteristics. Optimization was performed using 3 variables, hardness, protein content, and in vitro protein digestibility, to generate an optimal muffin with PGEL (PGEL-Muffin). PGEL-Muffin had a positive effect in its nutritional content and texture (protein: 12.03 %, fiber: 7.90 %, lipids: 9.23 %, and hardness: 4.41 N) compared to a muffin without protein addition (Control) and a muffin with added pea protein powder (Powder-Muffin). PGEL-Muffin did not modify gut microbiome using an ex-vivo system after 4-days of administration. PGEL ingredient could be an opportunity to develop nutritionally improved products without a negative impact on textural properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.141305 | DOI Listing |
J Food Sci
January 2025
Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA.
Cleaning-in-place (CIP) is the most commonly used cleaning and sanitation procedure for removing fouling deposits. Traditional CIP includes a series of chemical cleaning cycles, including alkaline, acid, and sanitizer. However, these chemicals are hazardous to the environment and employees.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Department of Biology, University of Oxford, Oxford, UK.
Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada. Electronic address:
Starch-rich faba bean, yellow lentil, and yellow field pea flours were subjected to submerged fermentation using Aspergillus oryzae and Lactobacillus plantarum starter mono- or co-cultures, to increase protein contents of the flours. Fermentation mixes were supplemented with up to 35 g/L urea, ammonium sulfate and/or monoammonium phosphate as nitrogen sources. Protein contents of the flours increased 2-2.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Bioresource Engineering, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
This study aims to develop rapid and non-invasive methods based on near-infrared hyperspectral imaging and chemometrics for quantitative prediction of chemical compositions of pea-derived products. Hyperspectral imaging was used to acquire images from pea processing streams, namely pea flour, pea protein concentrate, and pea protein isolate. The PLS algorithm was used to develop quantitative prediction models based on the relationship between the hyperspectral image data and the chemical compositions of the pea products, including moisture, protein, ash, insoluble fiber, and total starch.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia.
It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!