Enhancing the performance of a lithium-sulfur battery with spatially confined mesoporous nanoreactors in sulfurized polyacrylonitrile cathodes.

J Colloid Interface Sci

School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Municipal Key Laboratory of Advanced Fiber and Energy Storage, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou, Hebei 061000, China. Electronic address:

Published: January 2025

Sulfurized polyacrylonitrile (SPAN), which is recognized as a promising cathode material for lithium-sulfur batteries (Li-SBs), effectively mitigates the shuttle effect resulting from polysulfide dissolution. However, conventional SPAN cathodes typically exhibit sulfur loadings below 40 wt%. While encapsulation of sulfur within pores via a solid electrolyte interface addresses the low sulfur loading issue, the suboptimal kinetics of the solid-solid reactions hinder effective utilization of sulfur within the pores. In this work, Me-SeSPAN/SeS fibrous membranes were successfully synthesized through electrospinning and molten salt-assisted pyrolysis of ZIF-8, which resulted in the formation of spatially confined interconnected mesoporous nanoreactors. These nanoreactors function as supplementary storage spaces, loading and constraining the size of internal active material clusters. The fibrous membranes facilitate Li movement through pore spaces and promote adsorption of the discharge product LiS on the pore walls via the spatial confinement effect. Based on density functional theory (DFT) calculations, this process guarantees a supply of electrons and Li to the active material, thereby enabling continuous electron transfer during redox reactions. The optimized Me-SeSPAN/SeS electrode, featuring a sulfur and selenium loading of 70 wt%, demonstrates exceptional cycling stability in both coin and pouch cells. This study presents an effective strategy for enhancing the kinetics of active materials encapsulated in SPAN cathodes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.09.129DOI Listing

Publication Analysis

Top Keywords

spatially confined
8
mesoporous nanoreactors
8
sulfurized polyacrylonitrile
8
span cathodes
8
sulfur pores
8
fibrous membranes
8
active material
8
sulfur
5
enhancing performance
4
performance lithium-sulfur
4

Similar Publications

Slower swimming promotes chemotactic encounters between bacteria and small phytoplankton.

Proc Natl Acad Sci U S A

January 2025

Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland.

Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells by reducing their search times, provided that bacteria detect noisy chemical gradients around phytoplankton. Gradient detection depends on bacterial phenotypes and phytoplankton size: large phytoplankton produce spatially extended but shallow gradients, whereas small phytoplankton produce steeper but spatially more confined gradients. To date, it has remained unclear how phytoplankton size and bacterial swimming speed affect bacteria's gradient detection ability and search times for phytoplankton.

View Article and Find Full Text PDF

Magneto-Photochemically Responsive Liquid Crystal Elastomer for Underwater Actuation.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland.

The quest for small-scale, remotely controlled soft robots has led to the exploration of magnetic and optical fields for inducing shape morphing in soft materials. Magnetic stimulus excels when navigation in confined or optically opaque environments is required. Optical stimulus, in turn, boasts superior spatial precision and individual control over multiple objects.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Xuanwu Hospital, Capital Medical University, Beijing, China.

Background: Graph theory is an advanced method for analyzing the balance of brain networks. However, the changes in white matter (WM) and metabolic networks and their correlation with clinical features in patients with posterior cortical atrophy (PCA) require further investigation. This study aims to clarify the structural, metabolic, WM, and metabolic topological network in PCA, and explore their correlation with clinical features.

View Article and Find Full Text PDF

Solid-State Photoswitching of Hydrazones Based on Excited-State Intramolecular Proton Transfer.

J Am Chem Soc

January 2025

Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia.

The development of new photochromic systems is motivated by the possibility of controlling the properties and functions of materials with high spatial and temporal resolution in a reversible manner. While there are several classes of photoswitches operating in solution, the design of systems efficiently operating in the solid state remains highly challenging, mainly due to limitations related to confinement effects. Triaryl-hydrazones represent a relatively new subclass of bistable hydrazone photoswitches exhibiting efficient / photochromism in solution.

View Article and Find Full Text PDF

Temperature-Dependent Cytokine Neutralization Induced by Magnetoelectric Nanoparticles: An In Silico Study.

Int J Mol Sci

December 2024

Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy.

Inflammatory cytokines cooperate to maintain normal immune homeostasis, performing both a protective and a pro-inflammatory action in different body districts. However, their excessive persistence or deregulated expression may degenerate into tissue chronic inflammatory status. Advanced therapies should be designed to deploy selective cytokine neutralizers in the affected tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!