Borophene stands out among elemental two-dimensional materials due to its extraordinary physical properties, including structural polymorphism, strong anisotropy, metallicity, and the potential for phonon-mediated superconductivity. However, confirming superconductivity in borophene experimentally has been evasive to date, mainly due to the detrimental effects of metallic substrates and its susceptibility to oxidation. In this study, we present an analysis of superconductivity in the experimentally synthesized hydrogenated β borophene, which has been proven to be less prone to oxidation. Our findings demonstrate that hydrogenation significantly enhances both the stability and superconducting properties of β borophene. Furthermore, we reveal that tensile strain and hole doping, achievable through various experimental methods, significantly enhance the critical temperature, reaching up to 29 K. These findings not only promote further fundamental research on superconducting borophene and its heterostructures, but also position hydrogenated borophene as a versatile platform for low-dimensional superconducting electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c03845 | DOI Listing |
Lab Chip
January 2025
Department of Chemistry, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.
In the past decade, interest in nanoplasmonic structures has experienced significant growth, owing to rapid advancements in materials science and the evolution of novel nanofabrication techniques. The activities in the area are not only leading to remarkable progress in specific applications in photonics, but also permeating to and synergizing with other fields. This review delves into the symbiosis between nanoplasmonics and microfluidics, elucidating fundamental principles on nanophotonics centered on surface plasmon-polaritons, and key achievements arising from the intricate interplay between light and fluids at small scales.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, IIT Jodhpur, NH 62, Karwar, Jodhpur, Jodhpur, Rajasthan, 342011, INDIA.
The industrialization has severely impacted the ecosystem because of intensive use of chemicals and gases, causing the undesired outcomes such as hazardous gases, e.g., carbon monoxide (CO), nitrox oxide (NOx), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S) and even volatile organic compounds.
View Article and Find Full Text PDFNano Lett
October 2024
Department of Physics and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
Borophene stands out among elemental two-dimensional materials due to its extraordinary physical properties, including structural polymorphism, strong anisotropy, metallicity, and the potential for phonon-mediated superconductivity. However, confirming superconductivity in borophene experimentally has been evasive to date, mainly due to the detrimental effects of metallic substrates and its susceptibility to oxidation. In this study, we present an analysis of superconductivity in the experimentally synthesized hydrogenated β borophene, which has been proven to be less prone to oxidation.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
Borophene, a novel two-dimensional material unveiled in 1998, has garnered significant interest among researchers due to its distinct mechanical and electrical characteristics. Efforts to experimentally synthesize borophene continue to captivate researchers' interest in recent years. Given the current lack of experimental studies on the interaction between water and the borophene surface, molecular dynamics simulation offers a valuable approach for predicting the substance's reactivity with water.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2024
Department of Physics, National Institute of Technology Patna, Bihar 800005, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!