Excitatory glutamatergic NMDA receptors (NMDARs) are key regulators of spinal pain processing, and yet the biophysical properties of NMDARs in dorsal horn nociceptive neurons remain poorly understood. Despite the clinical implications, it is unknown whether the molecular and functional properties of synaptic NMDAR responses are conserved between males and females or translate from rodents to humans. To address these translational gaps, we systematically compared individual and averaged excitatory synaptic responses from lamina I pain-processing neurons of adult Sprague-Dawley rats and human organ donors, including both sexes. By combining patch-clamp recordings of outward miniature excitatory postsynaptic currents with non-biased data analyses, we uncovered a wide range of decay constants of excitatory synaptic events within individual lamina I neurons. Decay constants of synaptic responses were distributed in a continuum from 1-20 ms to greater than 1000 ms, suggesting that individual lamina I neurons contain AMPA receptor (AMPAR)-only as well as GluN2A-, GluN2B- and GluN2D-NMDAR-dominated synaptic events. This intraneuronal heterogeneity in AMPAR- and NMDAR-mediated decay kinetics was observed across sex and species. However, we discovered an increased relative contribution of GluN2A-dominated NMDAR responses at human lamina I synapses compared with rodent synapses, suggesting a species difference relevant to NMDAR subunit-targeting therapeutic approaches. The conserved heterogeneity in decay rates of excitatory synaptic events within individual lamina I pain-processing neurons may enable synapse-specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. KEY POINTS: Synaptic NMDA receptors (NMDARs) in spinal dorsal horn nociceptive neurons are key regulators of pain processing, but it is unknown whether their functional properties are conserved between males and females or translate from rodents to humans. In this study, we compared individual excitatory synaptic responses from lamina I pain-processing neurons of male and female adult Sprague-Dawley rats and human organ donors. Individual lamina I neurons from male and female rats and humans contain AMPA receptor-only as well as GluN2A, GluN2B- and GluN2D-NMDAR-dominated synaptic events. This may enable synapse-specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. Human lamina I synapses have an increased relative contribution of GluN2A-dominated NMDAR responses compared with rodent synapses. These results uncover a species difference relevant to NMDAR subunit-targeting therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/JP285521 | DOI Listing |
Eye (Lond)
January 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
Objectives: To use finite element (FE) modeling and in vivo optical coherence tomography (OCT) imaging to explore the effect of ciliary muscle traction on optic nerve head (ONH) deformation during accommodation.
Methods: We developed a FE model to mimic the ciliary muscle traction during accommodation, and varied the stiffness of the sclera, choroid, Bruch's membrane (BM), prelaminar neural tissue and lamina cribrosa (LC) to assess their effects on accommodation-induced ONH strains. To validate the FE model, OCT images of the right eyes' ONHs from 20 subjects (25 ± 1.
Expert Rev Respir Med
January 2025
School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, USA.
Introduction: In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization.
Areas Covered: 1.
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
December 2024
Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital of Qingdao University, Yantai264000, China Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai264000, China Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai264000, China.
To investigate the clinical characteristics, treatment, and efficacy of spontaneous cerebrospinal fluid rhinorrhea (CFR) combined with aspiration pneumonia. In this case series study, a total of 8 patients diagnosed with spontaneous CFR combined with aspiration pneumonia were admitted to the Department of Otorhinolaryngology Head and Neck Surgery at Yuhuangding Hospital Affiliated with Qingdao University from March 2020 to March 2022. There were 3 males and 5 females, with ages ranging from 45 to 57 years.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, People's Republic of China.
Background: Gorham-Stout disease (GSD) is a rare disease characterized by osteolysis and lymphatic malformations. GSD involving the spine is exceptionally rare and lacks a standard cure. The aim of this article was to report a case of GSD with scoliosis treated via corrective surgery and medication.
View Article and Find Full Text PDFMetabolism
December 2024
Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Artificial Intelligence Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China. Electronic address:
Skeletal muscle is a crucial tissue for physical activity and energy metabolism. Muscle atrophy, characterized by the loss of muscle mass and strength, contributes to adverse outcomes among individuals. This study elucidated the involvement of the nuclear lamina component PRR14 in transmitting mechanical signals and mediating the impact of exercise on skeletal muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!