Self-assembly of thrombin-free solutions of fibrinogen can be triggered not only by a drop in the ionic strength but also by an appropriate decrease in temperature. Accordingly, an in situ study of self-assembly of fibrinogen in saline buffered solution is carried out by means of time-resolved light scattering providing the molar mass, geometric size, and hydrodynamic radius of the growing intermediates. The resulting data provide access to the morphology of the intermediates and to the mechanism in which these intermediates grow during the early stages of self-assembly. Modeling the results of concentration dependent experiments based on temperature gradients in terms of a chain growth mechanism leads to the corresponding molar standard enthalpy and entropy of aggregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c02180 | DOI Listing |
Nano Lett
January 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
Lubrication surfaces reduce the risk of cross-contamination and enhance the long-term stability of medical devices, which holds significance in the realm of antifouling medical materials. However, the complexity of constructing micronano structures to immobilize lubricating fluids and the fluorine content typically found in silane coupling agents restrict their widespread adoption. In this study, we prepared a biomimetic lubricating coating (BLC) through the one-step self-assembly of octadecyltrichlorosilane and oil infusion.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.
Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
Recent clinical studies have highlighted the presence of microclots in the form of amyloid fibrinogen particles (AFPs) in plasma samples from Long COVID patients. However, the clinical significance of these abnormal, nonfibrillar self-assembly aggregates of human fibrinogen remains debated due to the limited understanding of their structural and biological characteristics. In this study, we present a method for generating mimetic microclots in vitro.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
Fakultät für Naturwissenschaften/Physikalische Chemie, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.
ACS Appl Bio Mater
September 2024
Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!