Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: In recent years, ultra-low field (ULF) magnetic resonance imaging (MRI) has gained widespread attention due to its advantages, such as low cost, light weight, and portability. However, the low signal-to-noise ratio (SNR) leads to a long scan time. Herein, we study the acceleration performance of parallel imaging (PI) and compressed sensing (CS) in different kspace sampling strategies at 0.12 mT.
Methods: This study employs phantoms to assess the efficiency of acceleration methods at ULF MRI, in which signals are detected by ultra-sensitive superconducting quantum interference devices (SQUIDs). We compare the performance of fast Fourier transform (FFT), generalized auto-calibrating partially parallel acquisitions (GRAPPA), and eigenvector-based SPIRiT (ESPIRiT) in Cartesian sampling, while also evaluating non-uniform FFT (NUFFT), GRAPPA operator gridding, and ESPIRiT in nonCartesian sampling. We design a resolution phantom to investigate the effectiveness of these methods in maintaining image resolution.
Results: In Cartesian sampling, GRAPPA and ESPIRiT jointly regularized by total variation and ℓ1-norm (TVJℓ1 -ESPIRiT) methods reconstructed good-quality phantom images with an acceleration factor of R = 2. In contrast, TVJℓ1-ESPIRiT exhibited improved image quality and much less signal loss even for R = 4. In radial sampling, TVJℓ1-ESPIRiT reduced the acquisition time to 1.69 minutes at R = 4, with a respective improvement of 12.26 dB in peak SNR compared to NUFFT. The resolution phantom imaging showed that the reconstructions by PI and CS maintained the original resolution of 2 mm.
Conclusion And Significance: This study improves the practicality of ULF MRI at microtesla fields by implementing imaging acceleration with PI and CS in different k-space sampling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2024.3466929 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!