Catalytic asymmetric multicomponent 1,2-boronate rearrangements provide a practical approach for synthesizing highly valuable enantioenriched boronic esters. When applied to alkenyl or heteroaryl boronates, these reactions have relied mainly on transition-metal catalysis. Herein, we present an organocatalytic, Lewis base-catalyzed asymmetric multicomponent 1,2-boronate rearrangement, involving indoles, boronic esters, and Morita-Baylis-Hillman carbonates, leading to enantioenriched, highly substituted indole and indoline derivatives. Using cinchona alkaloid-based catalysts, high selectivity has been achieved, enabling expansion of the chemical space around pharmaceutically relevant indole and indoline derivatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467900 | PMC |
http://dx.doi.org/10.1021/jacs.4c11113 | DOI Listing |
J Colloid Interface Sci
December 2024
College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China. Electronic address:
The unique structure and strong interaction of multiphase hybrid materials have garnered significant attention as prospective candidates for electrode materials in the realm of energy storage. The present study presents a rational design of a functional NiSe-CoSe/N, B double-doped carbon hybrid composite (NCS/C), resulting in the emergence of various novel cooperative regulatory mechanisms involving: (i) the heterogeneous structure of NiSe and CoSe generates built-in electric fields to increase electron mobility; (ii) the incorporation of polyatomic double-doped carbon (N, and B) expedites electron transfer rate; intriguingly, (iii) ionic liquids not only serve as polyatomic dopants in the reaction system but also influence the microstructure of the composite. Benefiting from these synergistic effects, the NCS/C hybrid exhibits remarkable charge storage capacity and rapid electrochemical kinetics, driven by its multi-fold hollow structure and multicomponent cooperative modulation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Xi'an Jiaotong University, School of Chemical Engineering & Technology, Xingqing Road 28, 710049, Xi'an, CHINA.
The nickel catalyzed multi-component cross-electrophile carbonylation which emerges as a powerful and efficient method for constructing diverse ketones has attracted increasing attention of organic chemists. However, the selectivity of this reaction poses a significant challenge. In this work, we have developed a current-regulated selective nickel-catalyzed electroreductive cross-electrophile carbonylation, which offers a direct convergent synthesis of β/γ-hydroxy ketones, which represent pivotal structural motifs found in numerous natural products, bioactive molecules, pharmaceutical compounds, and essential building blocks.
View Article and Find Full Text PDFSci Adv
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China.
Imidazo[1,2-]pyridines are privileged heterocycles with diverse applications in medicinal chemistry; however, the catalytic asymmetric synthesis of these heterocyclic structures remains underexplored. Herein, we present an efficient and modular approach for the atroposelective synthesis of axially chiral imidazo[1,2-]pyridines via an asymmetric multicomponent reaction. By utilizing a chiral phosphoric acid catalyst, the Groebke-Blackburn-Bienaymé reaction involving various 6-aryl-2-aminopyridines, aldehydes, and isocyanides gave access to a wide range of imidazo[1,2-]pyridine atropoisomers with high to excellent yields and enantioselectivities.
View Article and Find Full Text PDFAcc Chem Res
December 2024
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
Small
November 2024
Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!