The incorporation of bactericidal properties into textiles is a widely sought-after aspect, and silver nanoparticles (AgNPs) can be used for this. Here, we evaluate a strategy for incorporating AgNPs into a cotton fabric. For this purpose, a bactericidal textile coating based on a composite of AgNPs and kappa-carrageenan (-CA) was proposed. The composite was obtained by heating the silver precursor (AgNO) directly in -CA solution for green synthesis and in situ AgNPs stabilization. Cotton substrates were added to the heated composite solution for surface impregnation and hydrogel film formation after cooling. Direct synthesis of AgNPs on a fabric was also tested. The results showed that the application of a coating based on -CA/AgNPs composite can achieve more than twice the silver loading on the fabric surface compared to the textile subjected to direct AgNPs incorporation. Furthermore, silver release tests in water showed that higher Ag levels were reached for -CA/AgNPs-coated cotton. Therefore, inoculation tests with the bacteria (SA) using the agar diffusion method showed that samples covered with the composite resulted in significantly larger inhibition halos. This indicated that the use of the composite as a coating for cotton fabric improved its bactericidal activity against SA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497209 | PMC |
http://dx.doi.org/10.1021/acsabm.4c01002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!