The production and purification of a tetrameric zinc beta-lactamase from Pseudomonas maltophilia IID 1275 were greatly improved. Three charge variants were isolated by chromatofocusing. The subunits each contain two atomic proportions of zinc and (in two of the variants) one residue of cysteine. The thiol group is not required for activity, nor does it appear to bind to the metal. Replacement of zinc by cobalt, cadmium or nickel takes place at a measurable rate, and gives enzymes that are less active than the zinc enzyme. The properties of this enzyme differ from those of the other known zinc beta-lactamase, beta-lactamase II from Bacillus cereus. The amino acid sequence of the N-terminal 32 residues was determined; there is no similarity to the N-terminal sequences of other beta-lactamases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1145126 | PMC |
http://dx.doi.org/10.1042/bj2290791 | DOI Listing |
FEBS J
January 2025
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
Rhizobium etli is a nitrogen-fixing bacterium that encodes two l-asparaginases. The structure of the inducible R. etli asparaginase ReAV has been recently determined to reveal a protein with no similarity to known enzymes with l-asparaginase activity, but showing a curious resemblance to glutaminases and β-lactamases.
View Article and Find Full Text PDFNat Microbiol
January 2025
Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
Carbapenems are last-resort antibiotics for treating bacterial infections. The widespread acquisition of metallo-β-lactamases, such as VIM-2, contributes to the emergence of carbapenem-resistant pathogens, and currently, no metallo-β-lactamase inhibitors are available in the clinic. Here we show that bacteria expressing VIM-2 have impaired growth in zinc-deprived environments, including human serum and murine infection models.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom.
While relative binding free energy (RBFE) calculations using alchemical methods are routinely carried out for many pharmaceutically relevant protein targets, challenges remain. For example, open-source tools do not support the easy setup and simulation of metalloproteins, particularly when ligands directly coordinate to the metal site. Here, we evaluate the performance of RBFE methods for KPC-2, a serine-β-lactamase (SBL), and two nonbonded metal parameter setups for VIM-2, a metallo-β-lactamase (MBL) with two active site zinc ions.
View Article and Find Full Text PDFMicrob Drug Resist
January 2025
Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
Carbapenenemase producers, particularly the metallo-β-lactamase (MBL) types in , have emerged as an urgent threat in health care settings. MBLs require zinc at their catalytic site and can be inhibited by dimercaptosuccinic acid (DMSA), a metal chelator known for the treatment of lead and mercury intoxication. Isogenic strains of wild-type and OprD-deleted PA14, were constructed, producing the MBLs VIM-2, NDM-1, SPM-1, IMP-1, and AIM-1, or the non-MBL carbapenemases, GES-5 and KPC-2.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2024
Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy.
New Delhi metallo-β-lactamase 1 (NDM-1) is an enzyme involved in the drug resistance of many bacteria against most of the widely adopted antibiotics, such as penicillins, cephalosporins, and carbapenems. Consequently, inhibiting NDM-1 swiftly has gained significant interest as a strategy to counteract this bacterial defense mechanism, thereby restoring the effectiveness of antibiotics. Among the inhibitors tested against the enzyme, ebselen () showed particularly promising results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!