A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reliability of urban microclimate simulations: spatio-temporal validation through intra-urban canyon transects for outdoor thermal comfort analysis. | LitMetric

Reliability of urban microclimate simulations: spatio-temporal validation through intra-urban canyon transects for outdoor thermal comfort analysis.

Int J Biometeorol

LABCON - Laboratory of Environmental Comfort, Department of Architecture and Urbanism, Federal University of Santa Catarina, Florianópolis, 88040-970, Brazil.

Published: December 2024

Mitigating Urban Heat Island (UHI) intensity in cities through adaptative strategies has become an urgent need, as UHI are also exacerbated by climate change impacts imputable to anthropogenic actions. This study addresses the need for reliable simulation models to analyze outdoor thermal comfort (OTC) in future or alternative scenarios. The aim of the present study is to contribute to the validation of CFD urban microclimate simulations by employing intra-urban canyon transects as an alternative or a complementary approach to fixed stations. To accomplish this, we developed a cost-effective monitoring unit to carry out transects on a pre-defined route (1), devised the area of interest (2), elaborated a simulation model in ENVI-met (3), and proposed different validation methods for comparative analyses (4). Results indicate that temporal validated simulation tended to underestimate thermal indices in the morning and night and overestimate them in the afternoon, while spatio-temporal validation under a human-centric comfort approach via wearable sensing notably improved accuracy. Moderate to very strong agreement between simulation and measurement data in summer (Willmot's d ~ 0.70, d ~ 0.81) and very strong agreement in winter (d ~ 0.79, d ~ 0.96), with low error magnitudes in summer (RMSE ~ 0.91℃ and 9.59%, MBE ~ 0.23℃ and 9.10%) have been found. In winter, such figures were RMSE ~ 0.71℃ and 3.51%, MBE ~ 0.00℃ and 0.98%, for the spatio-temporal validated model. This research contributes to enhancing the reliability of relatively affordable CFD urban microclimate simulations, supporting its scale up for policymakers in implementing effective strategies for OTC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00484-024-02784-5DOI Listing

Publication Analysis

Top Keywords

urban microclimate
12
microclimate simulations
12
spatio-temporal validation
8
intra-urban canyon
8
canyon transects
8
outdoor thermal
8
thermal comfort
8
cfd urban
8
strong agreement
8
reliability urban
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!