REM sleep remains paradoxical: sub-states determined by thalamo-cortical and cortico-cortical functional connectivity.

J Physiol

Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS, UMR5292, Université Claude Bernard, Bron, France.

Published: October 2024

During paradoxical sleep (PS, aka REM sleep) the cerebral cortex displays rapid electroencephalographic activity similar to that of wakefulness, whereas in the posterior associative thalamus, rapid activity is interrupted by frequent periods of slow-wave (delta) oscillations at 2-3 Hz, thereby dissociating the intrinsic frequency in thalamus and cortex. Here we studied the functional consequences of such a dissociation using intrathalamic and intracortical recordings in 21 epileptic patients, applying coherence analysis to examine changes in functional connectivity between the posterior thalamus (mainly medial pulvinar) and six cortical functional networks, and also between each cortical network with respect to the others. Periods of slow-wave thalamic activity ('delta PS') were more prevalent than phases of 'rapid PS,' and the delta/rapid thalamic alternance did not overlap with the classical tonic/phasic dichotomy based on rapid eye movements. Thalamo-cortical and cortico-cortical functional connectivity significantly decreased during delta PS, relative to both rapid PS periods and to wakefulness. The fact that delta thalamic activity and low thalamo-cortical binding coincided with a suppression of cortico-cortical connectivity supports a crucial role for the posterior associative thalamus, and particularly the medial pulvinar, in ensuring trans-thalamic communication between distant cortical areas. Disruption of such a trans-thalamic communication during delta PS compromises the functional binding between cortical areas, and consequently might contribute to the alteration of perceptual experiences commonly reported during dreams. KEY POINTS: During paradoxical, or REM, sleep (PS), rapid thalamic activity is interrupted by frequent periods of slow delta waves at 2-3 Hz. During these periods of thalamic delta activity there was a drastic drop of functional connectivity between associative thalamus and cortex, and also among different cortical networks. The delta/rapid alternance did not overlap with the classically defined 'tonic/phasic' periods and therefore suggests a distinct dichotomy of functional states in PS. Recurrent decrease in thalamo-cortical and cortico-cortical functional connectivity during PS may compromise the spatio-temporal binding between cortical areas, which in turn could hinder the formation of coherent mental content during dreams.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP286074DOI Listing

Publication Analysis

Top Keywords

functional connectivity
20
rem sleep
12
thalamo-cortical cortico-cortical
12
cortico-cortical functional
12
associative thalamus
12
thalamic activity
12
cortical areas
12
functional
9
posterior associative
8
activity interrupted
8

Similar Publications

Systemic lupus erythematosus (SLE) is an autoimmune disease whose pathogenesis is not fully understood to date. One of the suggested mechanisms for its development is NETosis, which involves the release of a specific network consisting of chromatin, proteins, and enzymes from neutrophils, stimulating the immune system. One of its markers is citrullinated histone H3 (H3Cit).

View Article and Find Full Text PDF

Objective: The effectiveness and optimal stimulation site of deep brain stimulation (DBS) for central poststroke pain (CPSP) remain elusive. The objective of this retrospective international multicenter study was to assess clinical as well as neuroimaging-based predictors of long-term outcomes after DBS for CPSP.

Methods: The authors analyzed patient-based clinical and neuroimaging data of previously published and unpublished cohorts from 6 international DBS centers.

View Article and Find Full Text PDF

Extreme Synergy in the Random-Energy Model.

Phys Rev Lett

December 2024

Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.

The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.

View Article and Find Full Text PDF

Objective: Patients with drug-resistant epilepsy (DRE) are often referred for phase II evaluation with stereo-electroencephalography (SEEG) to identify a seizure onset zone for guiding definitive treatment. For patients without a focal seizure onset zone, neuromodulation targeting the thalamic nuclei-specifically the centromedian nucleus, anterior nucleus of the thalamus, and pulvinar nucleus-may be considered. Currently, thalamic nuclei selection is based mainly on the location of seizure onset, without a detailed evaluation of their network involvement.

View Article and Find Full Text PDF

Human brain dynamics are shaped by rare long-range connections over and above cortical geometry.

Proc Natl Acad Sci U S A

January 2025

Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain.

A fundamental topological principle is that the container always shapes the content. In neuroscience, this translates into how the brain anatomy shapes brain dynamics. From neuroanatomy, the topology of the mammalian brain can be approximated by local connectivity, accurately described by an exponential distance rule (EDR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!