DNA aptamers for common buffer molecules: possibility of buffer interference in SELEX.

Org Biomol Chem

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.

Published: October 2024

During a typical aptamer selection experiment, buffer molecules are used at the 10 to 50 mM range, whereas target molecules could be used at much lower concentrations even in low μM levels. Therefore, doubts existed regarding the potential enrichment of buffer binding aptamers, particularly for failed selections that cannot validate binding of enriched sequences. In this study, we used two common buffer molecules, Tris and HEPES, as target molecules. While we successfully isolated aptamers for Tris buffer, our attempts to generate aptamers for HEPES buffer failed. Thioflavin T (ThT) fluorescence spectroscopy showed the dissociation constant () of the Tris buffer aptamer to be 2.9 mM, while isothermal titration calorimetry showed a of 43 μM. NMR spectroscopy also confirmed aptamer binding. Finally, we discussed the implications of this buffer selection work and recommended the use of certain buffers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ob00622dDOI Listing

Publication Analysis

Top Keywords

buffer molecules
12
buffer
9
common buffer
8
target molecules
8
tris buffer
8
molecules
5
dna aptamers
4
aptamers common
4
molecules possibility
4
possibility buffer
4

Similar Publications

Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures.

View Article and Find Full Text PDF

Modification of Cells with Metal Hexacyanoferrates for the Construction of a Yeast-Based Fuel Cell.

Molecules

January 2025

Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.

This research presents a simple procedure for chemically modifying yeast () cells with nickel hexacyanoferrate (NiHCF) and ferric hexacyanoferrate, also known as Prussian blue (PB), to increase the conductivity of the yeast cell wall. Using linear sweep voltammetry, NiHCF-modified yeast and PB-modified yeast (NiHCF/yeast and PB/yeast, respectively) were found to have better cell wall conductivity in [Fe(CN)] and glucose-containing phosphate-buffered solution than unmodified yeast. Spectrophotometric analysis showed that the modification of yeast cells with NiHCF had a less harmful effect on yeast cell viability than the modification of yeast cells with PB.

View Article and Find Full Text PDF

YKL-40 is structurally similar to chitotriosidase (CHIT1), an active chitinase, but it lacks chitin-degrading activity while retaining chitin-binding capability. Elevated YKL-40 levels are associated with inflammatory diseases and cancers, making it a valuable biomarker. We previously reported that the W69T substitution in YKL-40 significantly reduces its chitin-binding affinity, identifying W69 as a crucial binding site.

View Article and Find Full Text PDF

Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for connecting two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts.

View Article and Find Full Text PDF

Lateral flow immunoassay (LFIA) has the advantages of simplicity and rapidness, and is widely used for the rapid detection of pesticides and other analytes. However, small molecule compounds such as pesticides are often analyzed using competitive LFIA (CLFIA), whose sensitivity often does not meet the actual needs. In this study, a noncompetitive LFIA (NLFIA) for deltamethrin (DM) with high sensitivity was developed by using anti-immunocomplex peptides (AIcPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!