A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

One-Pot, Solvent Free Synthesis of 2,5-Furandicarboxylic Acid from Deep Eutectic Mixtures of Sugars as Mediated by Bifunctional Catalyst. | LitMetric

One-Pot, Solvent Free Synthesis of 2,5-Furandicarboxylic Acid from Deep Eutectic Mixtures of Sugars as Mediated by Bifunctional Catalyst.

ChemSusChem

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China.

Published: September 2024

Currently one-pot conversion of sugars to 2,5-furandicarboxylic acid (FDCA) is of significant interest due to the attainability of sugars as a feedstock and the enormous potential of FDCA as a bioplastic monomer. However, it remains challenging to construct efficient catalysts for this process. In this study, CoO species were anchored to a sulfonated covalent organic framework thus affording a bifunctional catalyst (CoO@COF-SOH). The sulfonic acid sites dehydrate sugars to 5-hydroxymethylfurfural (HMF), which is next oxidized to FDCA as catalyzed by the CoO species. Such a process was applied in the conversion of various binary and ternary deep eutectic mixtures involving choline chloride and sugars without additional solvent. The maximum FDCA yield of 84 % was obtained using glucose-fructose eutectic mixture as the substrates. Moreover, the catalyst was recyclable and stable under the applied reaction conditions. Our process eliminates the employment of organic solvents and expensive noble metal catalysts, resulting in green and economic biomass conversions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202401930DOI Listing

Publication Analysis

Top Keywords

25-furandicarboxylic acid
8
deep eutectic
8
eutectic mixtures
8
bifunctional catalyst
8
coo species
8
sugars
5
one-pot solvent
4
solvent free
4
free synthesis
4
synthesis 25-furandicarboxylic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!