Quasi-collinear geometry is a special configuration of acousto-optic (AO) diffraction that applies the acoustic wave reflection from the AO cell input optical face and provides an extremely large interaction length for achieving abnormally high spectral resolution of AO tunable filters. As a result, it becomes possible to implement the multifrequency diffraction which has found important applications for laser pulse shaping. The operation of quasi-collinear AO devices in the multifrequency diffraction regimen is accompanied by the appearance of the longitudinal and transverse temperature gradients in the crystal, mainly due to the acoustic power absorption. Temperature changes the AO cell material stiffness moduli, affecting the characteristics of the incident and reflected acoustic waves (propagation velocities and walk-off angles), and the reflection condition in general. On the example of paratellurite crystal is shown that the AO cell heating near the reflecting facet leads to a deviation of the reflected acoustic beam propagation direction from that specified during the AO cell manufacturing. The deviation magnitude depends on the reflection geometry choice and, in the paratellurite, may exceed several degrees, which adversely affects the AO diffraction characteristics, reducing the AO interaction efficiency and distorting the transmission function shape. The reflected beam deviation may be compensated by means of choosing the angle between the AO cell reflecting face and the piezoelectric transducer face, taking into account the operating AO device thermal regimen.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0029027DOI Listing

Publication Analysis

Top Keywords

acoustic wave
8
wave reflection
8
multifrequency diffraction
8
reflected acoustic
8
acoustic
5
cell
5
temperature impact
4
impact acoustic
4
reflection
4
reflection quasi-collinear
4

Similar Publications

Quantifying Tinnitus Perception Improvement: Deriving the Minimal Clinically Important Difference of the Minimum Masking Level.

J Speech Lang Hear Res

January 2025

Division of Speech Pathology and Audiology, Research Institute of Audiology and Speech Pathology, College of Natural Sciences, Hallym University, Chuncheon, South Korea.

Purpose: Tools that can reliably measure changes in the perception of tinnitus following interventions are lacking. The minimum masking level, defined as the lowest level at which tinnitus is completely masked, is a candidate for quantifying changes in tinnitus perception. In this study, we aimed to determine minimal clinically important differences for minimum masking level.

View Article and Find Full Text PDF

Photoelasticity of crystals with the scheelite structure: quantum mechanical calculations.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.

We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.

View Article and Find Full Text PDF

The Sound of Silence: Suppressing Cbx5 Decreases Fibrosis by Inhibiting Fibroblasts.

Am J Respir Cell Mol Biol

January 2025

The Ohio State University, Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Columbus, Ohio, United States.

View Article and Find Full Text PDF

Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.

View Article and Find Full Text PDF

Low-vibration cryogenic test facility for next generation of ground-based gravitational-wave observatories.

Rev Sci Instrum

January 2025

OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.

We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!