Optical Transparency Windows in Near-Infrared and Short-Wave Infrared for the Skin, Skull, and Brain: Fluorescence Bioimaging Using PbS Quantum Dots.

J Biophotonics

State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.

Published: November 2024

Fluorescence imaging (FI) employing near-infrared (NIR) light within the range of ~750-1350 nm enables biomedical imaging several millimeters beneath the tissue surface. More recent investigations into the short-wave IR (SWIR) transparency windows between ~1550-1870 and 2100-2300 nm highlight their superior capabilities. This research presents a comparison of IR-FI of PbS quantum dots, emitting at 990, 1310, and 1580 nm, through the mouse scalp skin, skull, and brain. The SWIR fluorescence is the most effectively transmitted signal, showing particularly significant enhancement when passing through the skull, which causes high light scattering. For the analysis of the imaging results and light propagation through the organs, their spectra of attenuation, absorption, and scattering coefficients are measured. In view of biomedical imaging, attenuation due to light scattering is a more destructive factor. Hence, the spatial resolution and imaging contrast can be improved by operating in SWIR due to decreased light scattering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.202400171DOI Listing

Publication Analysis

Top Keywords

light scattering
12
transparency windows
8
skin skull
8
skull brain
8
pbs quantum
8
quantum dots
8
biomedical imaging
8
imaging
5
light
5
optical transparency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!