Small Molecule Detection with Ligation-Dependent Light-Up Aptamer Transcriptional Amplification.

ACS Appl Bio Mater

Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.

Published: October 2024

ATP and NAD are small biomolecules that participate in a variety of physiological functions and are considered as potential biomarkers for disease diagnosis. In this study, we developed a ligation-dependent light-up aptamer transcriptional amplification assay for the sensitive and selective detection of ATP and NAD. This assay relies on a specific DNA ligase that catalyzes the ligation of a nicked DNA template in the presence of a specific small molecule. We prepared a nicked template consisting of a duplex fragment with an overhang for the T7 promoter region and a single-stranded DNA with a complementary overhang sequence for the Broccoli aptamer. The nicked template was connected using a DNA ligase in the presence of a specific small molecule. The ligation product was subjected to transcription to amplify the light-up aptamer-mediated fluorescence signals. By integrating the target-dependent ligation and transcription amplification, significant signal amplification was achieved with 5.9 and 142 pM detection limits for ATP and NAD, respectively. Moreover, good selectivity to discriminate between the target and its analogues was also realized. The application of this method to biological samples was evaluated using human serum and exhibited excellent recovery values.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c00987DOI Listing

Publication Analysis

Top Keywords

small molecule
12
atp nad
12
ligation-dependent light-up
8
light-up aptamer
8
aptamer transcriptional
8
transcriptional amplification
8
dna ligase
8
presence specific
8
specific small
8
nicked template
8

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.

View Article and Find Full Text PDF

Capturing the Elusive Curve-Crossing in Low-Lying States of Butadiene with Dressed TDDFT.

J Phys Chem Lett

January 2025

Department of Physics, Rutgers University, Newark 07102, New Jersey, United States.

A striking example of the need to accurately capture states of double-excitation character in molecules is seen in predicting photoinduced dynamics in small polyenes. Due to the coupling of electronic and nuclear motions, the dark 2Ag state, known to have double-excitation character, can be reached after an initial photoexcitation to the bright 1Bu state via crossings of their potential energy surfaces. However, the shapes of the surfaces are so poorly captured by most electronic structure methods, that the crossing is missed or substantially mis-located.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!