A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional redundancy between glucocorticoid and mineralocorticoid receptors in mature corticotropin-releasing hormone neurons protects from obesity. | LitMetric

Functional redundancy between glucocorticoid and mineralocorticoid receptors in mature corticotropin-releasing hormone neurons protects from obesity.

Obesity (Silver Spring)

Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Published: October 2024

Objective: Here, we aimed to investigate the role of glucocorticoid and mineralocorticoid receptors (GRs and MRs, respectively) in the regulation of energy homeostasis.

Methods: We used three mouse models with simultaneous deletion of GRs and MRs in either forebrain neurons, the paraventricular nucleus, or corticotropin-releasing hormone (CRH) neurons and compared them with wild-type controls or isolated knockout groups. In addition to body weight, food intake, energy expenditure, insulin sensitivity, fat/lean mass distribution, and plasma corticosterone levels, we also performed transcriptomic analysis of CRH neurons and assessed their response to melanocortinergic stimulation.

Results: Similar to global double-knockout models, deletion of GRs and MRs specifically in mature CRH neurons resulted in obesity. Importantly, the latter was accompanied by insulin resistance, but not increased plasma corticosterone levels. Transcriptomic analysis of these neurons revealed upregulation of several genes involved in postsynaptic signal transduction, including the Ptk2b gene, which encodes proline-rich tyrosine kinase 2. Knockout of both nuclear receptors leads to upregulation of Ptk2b in CRH neurons, which results in their diminished responsiveness to melanocortinergic stimulation.

Conclusions: Our data demonstrate the functional redundancy of GRs and MRs in CRH neurons to maintain energy homeostasis and prevent obesity. Simultaneous targeting of both receptors might represent an unprecedented approach to counteract obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/oby.24116DOI Listing

Publication Analysis

Top Keywords

crh neurons
20
functional redundancy
8
glucocorticoid mineralocorticoid
8
mineralocorticoid receptors
8
corticotropin-releasing hormone
8
neurons
8
deletion grs
8
plasma corticosterone
8
corticosterone levels
8
transcriptomic analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!