Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy.

Sci Technol Adv Mater

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan.

Published: September 2024

Styrene-based ABA-type triblock copolymers and their blends are widely investigated thermoplastic elastomers (TPEs). The design of tough TPE materials with high strength and resilience requires further clarification of the relationship between microstructure and macroscopic properties of stretched samples. Here, we applied atomic force microscopy (AFM)-based quantitative nanomechanical mapping to study the deformation behavior of poly(styrene--isoprene--styrene) blends under tension. The results indicated that the glassy polystyrene (PS) domains deformed and inhomogeneous stress distributions developed in the initial stretching stage. At 200% strain, the glassy PS domains started to crack. The change in the peak value in the JKR Young's modulus diagram during stretching was consistent with the stress - strain curve. Analysis of the particles before and after stretching suggested that the glassy domains separated and reorganized during stretching.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418051PMC
http://dx.doi.org/10.1080/14686996.2024.2402685DOI Listing

Publication Analysis

Top Keywords

thermoplastic elastomers
8
atomic force
8
force microscopy
8
glassy domains
8
tracking evolution
4
evolution morphology
4
morphology stress
4
stress distribution
4
distribution sis
4
sis thermoplastic
4

Similar Publications

Coating Extrusion Characteristics of Thin-Walled Tubes for Catheters Using Thermoplastic Elastomer.

Polymers (Basel)

January 2025

Guangdong Engineering Technology Research Center of Small Household Appliances Innovation Design and Manufacturing, School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China.

During the production of medical thin-walled tubes, a thin coating layer is required. This requirement reduces the cross-sectional clearance area of the straight section flow channel formed by the mandrel and the die, leading to excessive pressure of the polymer melt at the shaping section, elevated die pressure, and backflow of the material melt, all of which directly impact the quality of the coating layer. To address these issues, this study conducted a non-isothermal numerical simulation of coating models both with and without a shaping section.

View Article and Find Full Text PDF

The paper presents a review of CNTs synthesis methods and their application as a functional filler to obtain polymer composites for various technical purposes for strain gauges, electrical heating, anti-static coatings, electrically conductive compounds, etc. Various synthesis methods allow CNTs with different morphology and structural properties to be created, which expands the possibilities of the application of such nanoscale structures. Polymers can provide such effects as 'shape memory' and self-repair of mechanical defects.

View Article and Find Full Text PDF

In the work presented here, we explore the upcycling of polyethylene terephthalate (PET) that was derived from water bottles. The material was granulated and extruded into a filament compatible with fused filament fabrication (FFF) additive manufacturing platforms. Three iterations of PET combined with a thermoplastic elastomer, styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA), were made with 5, 10, and 20% by mass elastomer content.

View Article and Find Full Text PDF

Vaporized hydrogen peroxide uptake by tubing used for aseptic Fill-Finish manufacturing of biopharmaceutical drug products.

Eur J Pharm Biopharm

December 2024

ten23 health AG, Mattenstr. 22, 4058 Basel, Switzerland; Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany. Electronic address:

Aseptic filling of biopharmaceutical products requires a grade A cleanroom environment, preferably ensured by isolators in grade C surroundings. Isolators are decontaminated before the start of filling processes using vaporized hydrogen peroxide (VHP) and filling starts at pre-defined residual VHP levels (e.g.

View Article and Find Full Text PDF

New thermoplastic poly(ester-ether) elastomers with enhanced mechanical properties derived from long-chain dicarboxylic acid for medical device applications.

J Mater Chem B

December 2024

Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.

Recent advances in medical plastics highlight the need for sustainable materials with desirable elastic properties. Traditional polyester elastomers have been used as alternatives to polyvinyl chloride (PVC) due to their biocompatibility and adjustable mechanical properties. However, these materials often lack the necessary stability and toughness for reliable medical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!