The co-precipitation method was used to prepare CuO, ZnO, CoO nanoparticles and CuO-ZnO-CoO nanocomposite. The structural, morphological, and optical properties of the prepared samples were studied using X-ray diffraction (XRD), total reflection X-ray fluorescence (TXRF), transmission electron microscopy (TEM), selected area electron diffraction (SAED), diffuse reflectance spectroscopy (DRS), and zeta potential. XRD analysis revealed that the crystal structures of CuO, ZnO, and CoO nanoparticles are monoclinic, hexagonal, and cubic, with average crystallite sizes of 30.8 nm, 31.8 nm, and 32.8 nm, respectively. For CuO-ZnO-CoO nanocomposites, the corresponding sizes were 24.9 nm, 13.6 nm, and 16.1 nm. The optical bandgaps of CuO, ZnO, CoO nanoparticles, and CuO-ZnO-CoO nanocomposites were 1.5 eV, 3.14 eV, 1.2 eV, and 1.3 eV, respectively. In this study, the antibacterial activity of CuO-ZnO-CoO nanocomposite against Gram-negative bacteria () and Gram-positive bacteria () was investigated and compared with the antibiotic . In addition, the effect of the nanocomposite on fungi was studied and compared with the antifungal .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417582PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e37802DOI Listing

Publication Analysis

Top Keywords

cuo-zno-coo nanocomposites
12
cuo zno
12
zno coo
12
coo nanoparticles
12
nanoparticles cuo-zno-coo
8
cuo-zno-coo nanocomposite
8
cuo-zno-coo
5
synthesis characterization
4
characterization evaluation
4
evaluation antibacterial
4

Similar Publications

In this study, we present the synthesis of a silver nanocomposite by utilizing a β-cyclodextrin (βCD) polymer anchored onto the surface of magnetic g-CN (referred to as g-CN-FeO/βCD-Ag). The structure and composition of the g-CN-FeO/βCD-Ag nanocomposite were thoroughly characterized using various techniques, including FT-IR, FE-SEM-EDS, TEM, TGA, XRD, ICP, and VSM. This catalytic system exhibited excellent selectivity in reducing nitro groups, even in the presence of other reactive functional groups, resulting in high yields ranging from 85 to 98%.

View Article and Find Full Text PDF

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

Magnetic microscale polymeric nanocomposites in drug delivery: advances and challenges.

Drug Discov Today

December 2024

Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA. Electronic address:

Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds.

View Article and Find Full Text PDF

Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.

View Article and Find Full Text PDF

NbCT/MoSe composites for a highly sensitive NH gas sensor at room temperature.

Talanta

December 2024

Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China. Electronic address:

The detection of ammonia (NH)gas holds significant importance in both daily life and industrial production. In this study, the NbCT/MoSe sensor was synthesized using a one-step hydrothermal method and applied for NH detection. The morphology and elemental composition of the composites were analyzed through a series of characterization techniques including XRD, TEM, SEM, and XPS, confirming the successful synthesis of NbCT/MoSe composite with the optimal mass ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!