Introduction: Injection of recombinant human nerve growth factor (rhNGF) evokes acute heat and prolonged "polymodal" (mechanosensitive [CM]) and "silent" (mechanosensitive [CMi]) C-nociceptor sensitization. Both nociceptor classes can be activated differentially using slowly depolarizing electrical sinusoidal stimuli.
Objectives: To explore the temporal profile of nociceptor sensitization to heat and mechanical and electrical stimuli in humans after rhNGF.
Methods: Recombinant human nerve growth factor (1 µg) and NaCl (0.9%) was injected into human forearm skin (n = 9, 50 µL/injection). Pain ratings (numeric rating scale) to transcutaneous electrical stimuli (1 ms 20 Hz rectangular pulses, 500-ms half-period sine wave [1 Hz] and 4 Hz sine wave pulses [2.5 and 60 seconds]) were assessed at days 3, 21, and 49 after injection, in addition to heat pain thresholds (HPTs, 9 × 9 mm thermode) and mechanical impact pain (4 and 8 m/second).
Results: Suprathreshold sinusoidal stimulation for specific CM (1 Hz) and combined CM and CMi (4 Hz) activation resulted in enhanced pain from day 3 post rhNGF and lasted throughout 7 weeks. These temporal dynamics contrasted minimum HPTs at day 3 (normalized by day 49) or mechanical impact pain (developing slowly until day 21 before declining depending on stimulus intensity). Correlation analyses of electrical pain indicated diverging kinetics when assessed for CM with or without concomitant CMi activation at days 3 and 21, which converged 7 weeks post rhNGF.
Conclusions: Exceptionally long sensitization of CM and CMi nociceptors by rhNGF, uncovered by suprathreshold electrical sinusoidal stimulation, indicates a signal transduction-independent long-lasting hyperexcitability of C-nociceptors that clinically may contribute to rhNGF-maintained chronic inflammatory pain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419415 | PMC |
http://dx.doi.org/10.1097/PR9.0000000000001190 | DOI Listing |
Mater Today Bio
February 2025
Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China.
Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated.
View Article and Find Full Text PDFHeliyon
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Orthopaedics, All India Institute of Medical Sciences, New Delhi, India.
Slimmer's paralysis is a peripheral mononeuropathy of the common peroneal (fibular) nerve (CPN/CFN), typically associated with rapid weight loss resulting in loss of subcutaneous fat pad and subsequent neural compression at the fibular head. Here, we describe a young man with a 1-year history of right-sided foot drop, which developed following a rapid intentional weight loss of 11 kg over a period of 15 days. This weight loss was preceded by rapid weight gain over 2 days owing to binge eating.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6.
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!