An experimental and numerical investigation was conducted to examine the formation of soot in methane/air laminar diffusion flames under varying CO dilution ratios, ranging from 0% to 40%, and pressures between 5 and 10 atm. The experimental methodology incorporated diffuse-light two-dimensional line-of-sight attenuation (diffuse 2D-LOSA) to ascertain the volume fraction and peak temperature distribution of soot within the flames. For the numerical methodology, CoFlame-an open-source computational code-was utilized to calculate the detailed flame temperature, soot volume fraction, and the mole fractions of key intermediate species pivotal to soot generation. The study reveals that an increased dilution ratio of CO can reduce flame temperature and the molar fraction of hydrogen (H), while simultaneously increasing the molar fraction of hydroxyl (OH). This shift in chemical composition results in a reduced rate of soot nucleation and an intensified oxidation process during the later stages of soot development, thereby diminishing the overall soot volume fraction. An increase in pressure significantly boosts the processes of soot nucleation, HACA surface growth, and PAH condensation, thereby promoting the formation of soot. Elevated pressure corresponds to an increase in flame temperature and a narrower soot formation region. Additionally, the inhibitory effect of CO dilution on soot formation is mitigated under increased pressure. The findings from this research are expected to provide valuable insights and strategic guidance for the management and control of pollutants in the context of hydrocarbon fuel combustion, particularly when CO dilution is employed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418808PMC
http://dx.doi.org/10.1039/d4ra05249hDOI Listing

Publication Analysis

Top Keywords

soot
12
soot formation
12
volume fraction
12
flame temperature
12
experimental numerical
8
dilution soot
8
diffusion flames
8
formation soot
8
soot volume
8
molar fraction
8

Similar Publications

This study investigated the ramifications of black carbon (BC) emissions on human health during the winter season of December 2019 to February 2020 in Dhaka, Bangladesh. BC, arising from incomplete combustion of fossil and biofuels, underwent meticulous measurement of densities, concentrations, and emissions at two pivotal sites. Employing low-volume air samplers with Quartz filters and subsequent analysis with an Aethalometer (Soot scanner, OT21, USA), the study unveiled monthly average BC densities of 1.

View Article and Find Full Text PDF

The removal of soot particles via high-performance catalysts is a critical area of research due to the growing concern regarding air pollution. Among various potential catalysts suitable for soot oxidation, cerium oxide-based materials have shown considerable promise. In this study, CeO samples obtained using a range of preparation methods (including hydrothermal synthesis (HT), sonochemical synthesis (SC), and hard template synthesis (TS)) were tested in soot combustion.

View Article and Find Full Text PDF

Isotopic Transient Kinetic Analysis of Soot Oxidation on MnO, MnO-CeO, and CeO Catalysts in Tight Contact Conditions.

Molecules

January 2025

Department of Chemical Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.

The reaction mechanism of soot oxidation on Mn (MnO), Mn-Ce (MnO-CeO), and Ce (CeO) catalysts in tight contact conditions was investigated using ITKA (isotopic transient kinetic analysis). The obtained results suggest that lattice-bulk oxygen from all studied catalysts takes part in the soot oxidation process but with varying relative contributions: for the Ce catalyst, this contribution is practically 100%, whereas with decreasing Ce content in Mn-Ce catalysts, the significance of lattice-bulk oxygen for soot oxidation diminishes. For the Mn catalyst, it is estimated to be below 50%.

View Article and Find Full Text PDF

Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!