Predicting superagers: a machine learning approach utilizing gut microbiome features.

Front Aging Neurosci

Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University, College of Medicine, Seoul, Republic of Korea.

Published: September 2024

Objective: Cognitive decline is often considered an inevitable aspect of aging; however, recent research has identified a subset of older adults known as "superagers" who maintain cognitive abilities comparable to those of younger individuals. Investigating the neurobiological characteristics associated with superior cognitive function in superagers is essential for understanding "successful aging." Evidence suggests that the gut microbiome plays a key role in brain function, forming a bidirectional communication network known as the microbiome-gut-brain axis. Alterations in the gut microbiome have been linked to cognitive aging markers such as oxidative stress and inflammation. This study aims to investigate the unique patterns of the gut microbiome in superagers and to develop machine learning-based predictive models to differentiate superagers from typical agers.

Methods: We recruited 161 cognitively unimpaired, community-dwelling volunteers aged 60 years or from dementia prevention centers in Seoul, South Korea. After applying inclusion and exclusion criteria, 115 participants were included in the study. Following the removal of microbiome data outliers, 102 participants, comprising 57 superagers and 45 typical agers, were finally analyzed. Superagers were defined based on memory performance at or above average normative values of middle-aged adults. Gut microbiome data were collected from stool samples, and microbial DNA was extracted and sequenced. Relative abundances of bacterial genera were used as features for model development. We employed the LightGBM algorithm to build predictive models and utilized SHAP analysis for feature importance and interpretability.

Results: The predictive model achieved an AUC of 0.832 and accuracy of 0.764 in the training dataset, and an AUC of 0.861 and accuracy of 0.762 in the test dataset. Significant microbiome features for distinguishing superagers included Alistipes, PAC001137_g, PAC001138_g, Leuconostoc, and PAC001115_g. SHAP analysis revealed that higher abundances of certain genera, such as PAC001138_g and PAC001115_g, positively influenced the likelihood of being classified as superagers.

Conclusion: Our findings demonstrate the machine learning-based predictive models using gut-microbiome features can differentiate superagers from typical agers with a reasonable performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417495PMC
http://dx.doi.org/10.3389/fnagi.2024.1444998DOI Listing

Publication Analysis

Top Keywords

gut microbiome
20
predictive models
12
superagers typical
12
microbiome features
8
machine learning-based
8
learning-based predictive
8
differentiate superagers
8
microbiome data
8
typical agers
8
shap analysis
8

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Inflammatory bowel disease is a chronic inflammatory condition predominantly affecting the intestines, encompassing both ulcerative colitis and Crohn disease (CD). As one of the most common gastrointestinal disorders, CD's pathogenesis is closely linked with the intestinal microbiota. Recently, fecal microbiota transplantation (FMT) has gained attention as a potential treatment for CD, with the effective reestablishment of intestinal microecology considered a crucial mechanism of FMT therapy.

View Article and Find Full Text PDF

Introduction: Intestinal constipation is a substantive global health concern, significantly impairing patient quality of life. An emerging view is that the gut microbiota plays a critical role in intestinal function, and probiotics could offer therapeutic benefits. This study aims to consolidate evidence from randomized controlled trials (RCTs) that assess the effectiveness of probiotics in modulating microbiota and ameliorating symptoms of constipation.

View Article and Find Full Text PDF

Insect diversity is closely linked to the evolution of phytophagy, with most phytophagous insects showing a strong degree of specialisation for specific host plants. Recent studies suggest that the insect gut microbiome might be crucial in facilitating the dietary (host plant) range. This requires the formation of stable insect-microbiome associations, but it remains largely unclear which processes govern the assembly of insect microbiomes.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!