A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plasma proteomic signatures for type 2 diabetes mellitus and related traits in the UK Biobank cohort. | LitMetric

AI Article Synopsis

  • The study evaluates the potential of plasma proteins to predict the risk of type 2 diabetes mellitus (T2DM) and related traits using data from UK Biobank participants.
  • Different analysis methods, like LASSO regression, were employed to compare the effectiveness of proteomic data against traditional clinical and genetic data for predicting traits like truncal fat and fitness levels.
  • Results showed that integrating proteomic signatures enhanced prediction accuracy for T2DM and other traits beyond existing clinical risk scores, indicating their value in disease prognostics.

Article Abstract

Aims/hypothesis: The plasma proteome holds promise as a diagnostic and prognostic tool that can accurately reflect complex human traits and disease processes. We assessed the ability of plasma proteins to predict type 2 diabetes mellitus (T2DM) and related traits.

Methods: Clinical, genetic, and high-throughput proteomic data from three subcohorts of UK Biobank participants were analyzed for association with dual-energy x-ray absorptiometry (DXA) derived truncal fat (in the adiposity subcohort), estimated maximum oxygen consumption (VOmax) (in the fitness subcohort), and incident T2DM (in the T2DM subcohort). We used least absolute shrinkage and selection operator (LASSO) regression to assess the relative ability of non-proteomic and proteomic variables to associate with each trait by comparing variance explained (R) and area under the curve (AUC) statistics between data types. Stability selection with randomized LASSO regression identified the most robustly associated proteins for each trait. The benefit of proteomic signatures (PSs) over QDiabetes, a T2DM clinical risk score, was evaluated through the derivation of delta (Δ) AUC values. We also assessed the incremental gain in model performance metrics using proteomic datasets with varying numbers of proteins. A series of two-sample Mendelian randomization (MR) analyses were conducted to identify potentially causal proteins for adiposity, fitness, and T2DM.

Results: Across all three subcohorts, the mean age was 56.7 years and 54.9% were female. In the T2DM subcohort, 5.8% developed incident T2DM over a median follow-up of 7.6 years. LASSO-derived PSs increased the R of truncal fat and VOmax over clinical and genetic factors by 0.074 and 0.057, respectively. We observed a similar improvement in T2DM prediction over the QDiabetes score [Δ AUC: 0.016 (95% CI 0.008, 0.024)] when using a robust PS derived strictly from the T2DM outcome versus a model further augmented with non-overlapping proteins associated with adiposity and fitness. A small number of proteins (29 for truncal adiposity, 18 for VOmax, and 26 for T2DM) identified by stability selection algorithms offered most of the improvement in prediction of each outcome. Filtered and clustered versions of the full proteomic dataset supplied by the UK Biobank (ranging between 600-1,500 proteins) performed comparably to the full dataset for T2DM prediction. Using MR, we identified 4 proteins as potentially causal for adiposity, 1 as potentially causal for fitness, and 4 as potentially causal for T2DM.

Conclusions/interpretation: Plasma PSs modestly improve the prediction of incident T2DM over that possible with clinical and genetic factors. Further studies are warranted to better elucidate the clinical utility of these signatures in predicting the risk of T2DM over the standard practice of using the QDiabetes score. Candidate causally associated proteins identified through MR deserve further study as potential novel therapeutic targets for T2DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419213PMC
http://dx.doi.org/10.1101/2024.09.13.24313501DOI Listing

Publication Analysis

Top Keywords

t2dm
13
clinical genetic
12
incident t2dm
12
proteins
9
proteomic signatures
8
type diabetes
8
diabetes mellitus
8
three subcohorts
8
truncal fat
8
t2dm subcohort
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!