Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Color supports object identification. However, two objects that differ in color under one light can appear indiscriminable under a second light, a phenomenon known as illuminant metamerism. Past studies evaluated the frequency of illuminant metamerism only under single, uniform illuminants. Here we used computer-graphics techniques to simulate a pair of planar surfaces placed under newly measured hyperspectral illumination maps that quantify the directional variability of real-world lighting environments. We counted the instances of illuminant metamerism that can be solved simply by viewing surfaces tilted to a different direction. Results show that most instances of illuminant metamerism can in theory be resolved for both trichromatic and dichromatic observers, suggesting that the physical directional variability available in natural lighting environments substantially mitigates the biological limitations of trichromacy or dichromacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616623 | PMC |
http://dx.doi.org/10.1364/OE.531468 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!