Background: Lung adenocarcinoma (LUAD) is a common type of malignant tumor with therapeutic challenges. Cancer-associated fibroblasts (CAFs) promote LUAD growth and metastasis, regulate the tumor immune response, and influence tumor treatment responses and drug resistance. However, the molecular mechanisms through which CAFs control LUAD progression are largely unknown. In this study, we aimed to determine the correlations between CAF-related genes and overall survival (OS) in patients with LUAD.

Methods: We acquired the gene expression data and clinical information of 522 patients with LUAD patients from The Cancer Genome Atlas (TCGA) and 442 patients with LUAD from the Gene Expression Omnibus (GEO) databases. CAF infiltration levels were assessed using the Microenvironment Cell Population (MCP) counter, the Estimating the Proportions of Immune and Cancer cells (EPIC) algorithm, and Tumor Immune Dysfunction and Exclusion (TIDE) scores. A CAF-related gene network was constructed using the Weighted gene co-expression network analysis (WGCNA). Based on the CAF-related genes, univariate Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analyses were performed to identify prognostic genes. Gene expression levels within the prognostic model were validated using the Cancer Cell Line Encyclopedia (CCLE) databases and Western blotting.

Results: Our results demonstrated that high CAF scores were associated with lower survival rates in patients with LUAD. Gene modules that were highly correlated with high CAF scores were closely associated with tissue characteristics and extracellular matrix structures in LUAD. In addition, correlations between CAF scores and responses to immunotherapy and chemotherapy were observed. Finally, we found that SNAI2 expression was higher in lung cancer tissues than in normal tissues.

Conclusion: Deepening our understanding of the influence of CAFs on tumor progression and treatment response at the molecular level can aid the development of more effective therapeutic strategies. This study provides important insights into the functional mechanisms of action of CAFs in LUAD and highlights their clinical implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418231PMC
http://dx.doi.org/10.1177/11795549241280506DOI Listing

Publication Analysis

Top Keywords

gene expression
12
patients luad
12
caf scores
12
cancer-associated fibroblasts
8
lung adenocarcinoma
8
luad
8
tumor immune
8
caf-related genes
8
luad gene
8
cox regression
8

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!