A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving synthetic media generation and detection using generative adversarial networks. | LitMetric

AI Article Synopsis

  • Synthetic images called deepfakes are made using computer graphics and AI, but they can spread fake information and break social media rules.
  • A new and better type of computer model called GAN helps tell the difference between real and fake images by using advanced techniques to improve accuracy.
  • The study tested this model on specific datasets and got amazing results, showing it can successfully detect fake images while also creating them safely.

Article Abstract

Synthetic images ar---e created using computer graphics modeling and artificial intelligence techniques, referred to as deepfakes. They modify human features by using generative models and deep learning algorithms, posing risks violations of social media regulations and spread false information. To address these concerns, the study proposed an improved generative adversarial network (GAN) model which improves accuracy while differentiating between real and fake images focusing on data augmentation and label smoothing strategies for GAN training. The study utilizes a dataset containing human faces and employs DCGAN (deep convolutional generative adversarial network) as the base model. In comparison with the traditional GANs, the proposed GAN outperform in terms of frequently used metrics ., Fréchet Inception Distance (FID) and accuracy. The model effectiveness is demonstrated through evaluation on the Flickr-Faces Nvidia dataset and Fakefaces d--ataset, achieving an FID score of 55.67, an accuracy of 98.82%, and an F1-score of 0.99 in detection. This study optimizes the model parameters to achieve optimal parameter settings. This study fine-tune the model parameters to reach optimal settings, thereby reducing risks in synthetic image generation. The article introduces an effective framework for both image manipulation and detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419665PMC
http://dx.doi.org/10.7717/peerj-cs.2181DOI Listing

Publication Analysis

Top Keywords

generative adversarial
12
adversarial network
8
model parameters
8
model
5
improving synthetic
4
synthetic media
4
media generation
4
generation detection
4
generative
4
detection generative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!