Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Code smells refer to poor design and implementation choices by software engineers that might affect the overall software quality. Code smells detection using machine learning models has become a popular area to build effective models that are capable of detecting different code smells in multiple programming languages. However, the process of building of such effective models has not reached a state of stability, and most of the existing research focuses on Java code smells detection. The main objective of this article is to propose dynamic ensembles using two strategies, namely greedy search and backward elimination, which are capable of accurately detecting code smells in two programming languages (., Java and Python), and which are less complex than full stacking ensembles. The detection performance of dynamic ensembles were investigated within the context of four Java and two Python code smells. The greedy search and backward elimination strategies yielded different base models lists to build dynamic ensembles. In comparison to full stacking ensembles, dynamic ensembles yielded less complex models when they were used to detect most of the investigated Java and Python code smells, with the backward elimination strategy resulting in less complex models. Dynamic ensembles were able to perform comparably against full stacking ensembles with no significant detection loss. This article concludes that dynamic stacking ensembles were able to facilitate the effective and stable detection performance of Java and Python code smells over all base models and with less complexity than full stacking ensembles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419637 | PMC |
http://dx.doi.org/10.7717/peerj-cs.2254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!