A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vehicle detection and classification using an ensemble of EfficientDet and YOLOv8. | LitMetric

Vehicle detection and classification using an ensemble of EfficientDet and YOLOv8.

PeerJ Comput Sci

Computer Science and Engineering, Lovely Professional University, Phagwara, Punjab, India.

Published: August 2024

With the rapid increase in vehicle numbers, efficient traffic management has become a critical challenge for society. Traditional methods of vehicle detection and classification often struggle with the diverse characteristics of vehicles, such as varying shapes, colors, edges, shadows, and textures. To address this, we proposed an innovative ensemble method that combines two state-of-the-art deep learning models EfficientDet and YOLOv8. The proposed work leverages data from the Forward-Looking Infrared (FLIR) dataset, which provides both thermal and RGB images. To enhance the model performance and to address the class imbalances, we applied several data augmentation techniques. Experimental results demonstrate that the proposed ensemble model achieves a mean average precision (mAP) of 95.5% on thermal images, outperforming the individual performances of EfficientDet and YOLOv8, which achieved mAPs of 92.6% and 89.4% respectively. Additionally, the ensemble model attained an average recall (AR) of 0.93 and an optimal localization recall precision (oLRP) of 0.08 on thermal images. For RGB images, the ensemble model achieved mAP of 93.1%, AR of 0.91, and oLRP of 0.10, consistently surpassing the performance of its constituent models. These findings highlight the effectiveness of proposed ensemble approach in improving vehicle detection and classification. The integration of thermal imaging further enhances detection capabilities under various lighting conditions, making the system robust for real-world applications in intelligent traffic management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419654PMC
http://dx.doi.org/10.7717/peerj-cs.2233DOI Listing

Publication Analysis

Top Keywords

vehicle detection
12
detection classification
12
efficientdet yolov8
12
ensemble model
12
traffic management
8
rgb images
8
proposed ensemble
8
thermal images
8
ensemble
6
vehicle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!