A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Frequency distribution-aware network based on discrete cosine transformation (DCT) for remote sensing image super resolution. | LitMetric

Single-image super-resolution technology based on deep learning is widely used in remote sensing. The non-local feature reflects the correlation information between different regions. Most neural networks extract various non-local information of images in the spatial domain but ignore the similarity characteristics of frequency distribution, which limits the performance of the algorithm. To solve this problem, we propose a frequency distribution aware network based on discrete cosine transformation for remote sensing image super-resolution. This network first proposes a frequency-aware module. This module can effectively extract the similarity characteristics of the frequency distribution between different regions by rearranging the frequency feature matrix of the image. A global frequency feature fusion module is also proposed. It can extract the non-local information of feature maps at different scales in the frequency domain with little computational cost. The experiments were on two commonly-used remote sensing datasets. The experimental results show that the proposed algorithm can effectively complete image reconstruction and performs better than some advanced super-resolution algorithms. The code is available at https://github.com/Liyszepc/FDANet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419657PMC
http://dx.doi.org/10.7717/peerj-cs.2255DOI Listing

Publication Analysis

Top Keywords

remote sensing
16
frequency distribution
12
network based
8
based discrete
8
discrete cosine
8
cosine transformation
8
sensing image
8
non-local feature
8
extract non-local
8
similarity characteristics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!