The adoption and integration of the Internet of Things (IoT) have become essential for the advancement of many industries, unlocking purposeful connections between objects. However, the surge in IoT adoption and integration has also made it a prime target for malicious attacks. Consequently, ensuring the security of IoT systems and ecosystems has emerged as a crucial research area. Notably, advancements in addressing these security threats include the implementation of intrusion detection systems (IDS), garnering considerable attention within the research community. In this study, and in aim to enhance network anomaly detection, we present a novel intrusion detection approach: the Deep Neural Decision Forest-based IDS (DNDF-IDS). The DNDF-IDS incorporates an improved decision forest model coupled with neural networks to achieve heightened accuracy (ACC). Employing four distinct feature selection methods separately, namely principal component analysis (PCA), LASSO regression (LR), SelectKBest, and Random Forest Feature Importance (RFFI), our objective is to streamline training and prediction processes, enhance overall performance, and identify the most correlated features. Evaluation of our model on three diverse datasets (NSL-KDD, CICIDS2017, and UNSW-NB15) reveals impressive ACC values ranging from 94.09% to 98.84%, depending on the dataset and the feature selection method. Notably, our model achieves a remarkable prediction time of 0.1 ms per record. Comparative analyses with other recent random forest and Convolutional Neural Networks (CNN) based models indicate that our DNDF-IDS performs similarly or even outperforms them in certain instances, particularly when utilizing the top 10 features. One key advantage of our novel model lies in its ability to make accurate predictions with only a few features, showcasing an efficient utilization of computational resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419618 | PMC |
http://dx.doi.org/10.7717/peerj-cs.2290 | DOI Listing |
Alzheimers Dement
December 2024
Department of Bionano Technology, Gachon University, Seongnam, Korea, Republic of (South).
Background: Electroencephalography (EEG) is a non-intrusive technique that provides comprehensive insights into the electrical activities of the brain's cerebral cortex. The brain signals obtained from EEGs can be used as a neuropsychological biomarker to detect different stages of Alzheimer's disease (AD) through quantitative EEG (qEEG) analysis. This paper investigates the difference in the abnormalities of resting state EEG (rEEG) signals between eyes-open (EOR) and eyes-closed (ECR) in AD by analyzing 19- scalp electrode EEG signals and making a comparison with healthy controls (HC).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bionano Technology, Gachon University, Seongnam, Korea, Republic of (South).
Background: Electroencephalography (EEG) is a non-intrusive technique that provides comprehensive insights into the electrical activities of the brain's cerebral cortex. The brain signals obtained from EEGs can be used as a neuropsychological biomarker to detect different stages of Alzheimer's disease (AD) through quantitative EEG (qEEG) analysis. This paper investigates the difference in the abnormalities of resting state EEG (rEEG) signals between eyes-open (EOR) and eyes-closed (ECR) in AD by analyzing 19- scalp electrode EEG signals and making a comparison with healthy controls (HC).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Engineering, Kebri Dehar University, 250, Somali, Ethiopia.
In recent times, there has been rapid growth of technologies that have enabled smart infrastructures-IoT-powered smart grids, cities, and healthcare systems. But these resource-constrained IoT devices cannot be protected by existing security mechanisms against emerging cyber threats. The aim of the paper is to present an improved security for smart healthcare IoT systems by developing an architecture for IADCL.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Engineering, Technology and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
The rapid integration of Internet of Things (IoT) systems in various sectors has escalated security risks due to sophisticated multilayer attacks that compromise multiple security layers and lead to significant data loss, personal information theft, financial losses etc. Existing research on multilayer IoT attacks exhibits gaps in real-world applicability, due to reliance on outdated datasets with a limited focus on adaptive, dynamic approaches to address multilayer vulnerabilities. Additionally, the complete reliance on automated processes without integrating human expertise in feature selection and weighting processes may affect the reliability of detection models.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126 Bari, Italy.
Intrusion Detection Systems (IDSs) are a crucial component of modern corporate firewalls. The ability of IDS to identify malicious traffic is a powerful tool to prevent potential attacks and keep a corporate network secure. In this context, Machine Learning (ML)-based methods have proven to be very effective for attack identification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!