Advanced 3D imaging techniques and image segmentation and classification methods can profoundly transform biomedical research by offering deep insights into the cytoarchitecture of the human brain in relation to pathological conditions. Here, we propose a comprehensive pipeline for performing 3D imaging and automated quantitative cellular phenotyping on Formalin-Fixed Paraffin-Embedded (FFPE) human brain specimens, a valuable yet underutilized resource. We exploited the versatility of our method by applying it to different human specimens from both adult and pediatric, normal and abnormal brain regions. Quantitative data on neuronal volume, ellipticity, local density, and spatial clustering level were obtained from a machine learning-based analysis of the 3D cytoarchitectural organization of cells identified by different molecular markers in two subjects with malformations of cortical development (MCD). This approach will grant access to a wide range of physiological and pathological paraffin-embedded clinical specimens, allowing for volumetric imaging and quantitative analysis of human brain samples at cellular resolution. Possible genotype-phenotype correlations can be unveiled, providing new insights into the pathogenesis of various brain diseases and enlarging treatment opportunities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419081 | PMC |
http://dx.doi.org/10.1101/2024.09.10.612232 | DOI Listing |
Psychophysiology
January 2025
Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
Cognitive control deficits and increased intra-subject variability have been well established as core characteristics of attention deficit hyperactivity disorder (ADHD), and there is a growing interest in their expression at the neural level. We aimed to study neural variability in ADHD, as reflected in theta inter-trial phase coherence (ITC) during error processing, a process that involves cognitive control. We examined both traditional event-related potential (ERP) measures of error processing (i.
View Article and Find Full Text PDFFront Child Adolesc Psychiatry
May 2023
Information and Support Center for Persons with Developmental Disorders, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.
Introduction: Issues in sensory processing (hereafter, sensory issues) associated with neurodevelopmental disorders are known to be particularly prominent from 6 to 9 years of age and are a critical issue in school life. These issues affect each individual's quality of life. Some of the issues are known to be relieved by self-care while some are not.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
Objective: Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells.
View Article and Find Full Text PDFGlobal disparities in neurosurgical care necessitate innovations addressing affordability and accuracy, particularly for critical procedures like ventriculostomy. This intervention, vital for managing life-threatening intracranial pressure increases, is associated with catheter misplacement rates exceeding 30% when using a freehand technique. Such misplacements hold severe consequences including haemorrhage, infection, prolonged hospital stays, and even morbidity and mortality.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!