'scratch assay', where a pipette is dragged through cultured tissue to create an injury gap to study cell migration and healing, the manual nature of the assay carries significant drawbacks. So much of the process depends on individual manual technique, which can complicate quantification, reduce throughput, and limit the versatility and reproducibility of the approach. Here, we present a truly open-source, low-cost, accessible, and robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, we demonstrate how scratching can be programmed to precisely remove areas of tissue to sculpt arbitrary tissue and wound shapes, as well as enable truly complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay, and opens up new possibilities in complex tissue engineering and cell biological assays for realistic wound healing and migration research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418959 | PMC |
http://dx.doi.org/10.1101/2024.08.27.609782 | DOI Listing |
J Cancer Res Ther
December 2024
Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.
Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive.
Methods: We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC.
The therapeutic potential of extracellular vesicles (EVs) in bone regeneration is noteworthy; however, their clinical application is impeded by low yield and limited efficacy. This study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on the therapeutic efficacy of EVs derived from periodontal ligament stem cells (PDLSCs) and preliminarily explored its mechanism. PDLSCs were cultured with osteogenic media and stimulated with or without LIPUS, and then EVs and LIPUS-stimulated EVs (L-EVs) were isolated separately.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.
Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.
Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).
Cells
January 2025
Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.
View Article and Find Full Text PDFCells
January 2025
Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany.
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!