Early-generated circuits are critical for the maturation of cortical network activity and the formation of excitation/inhibition (E/I) balance. This process involves the maturation of specific populations of inhibitory neurons. While parvalbumin (PV)-expressing neurons have been associated with E/I impairments observed in neurodevelopmental disorders, somatostatin-expressing (SST) neurons have recently been shown to regulate PV neuron maturation by controlling neural dynamics in the developing cortex. SST neurons receive transient connections from the sensory thalamus, yet the implications of transient connectivity in neurodevelopmental disorders remain unknown. Here, we show that thalamocortical connectivity to SST neurons is persistent rather than transient in a mouse model of Fragile X syndrome. We were able to restore the transient dynamics using chemogenetics, which led to the recovery of fragile X-associated dysfunctions in circuit maturation and sensory-dependent behavior. Overall, our findings unveil the role of early transient dynamics in controlling downstream maturation of sensory functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419037 | PMC |
http://dx.doi.org/10.1101/2024.09.08.611918 | DOI Listing |
Biol Psychiatry
January 2025
Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh; Center for the Neural Basis of Cognition, Carnegie Mellon University. Electronic address:
Background: Certain cognitive processes require inhibition provided by the somatostatin (SST) class of gamma-aminobutyric acid (GABA) neurons in the dorsolateral prefrontal cortex (DLPFC). This inhibition onto pyramidal neuron dendrites depends on both SST and GABA signaling. Although SST mRNA levels are lower in the DLPFC in schizophrenia, it is not known if SST neurons exhibit alterations in the capacity to synthesize GABA, principally via the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67).
View Article and Find Full Text PDFElife
January 2025
Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, United States.
The basal ganglia (BG) are an evolutionarily conserved and phylogenetically old set of sub-cortical nuclei that guide action selection, evaluation, and reinforcement. The entopeduncular nucleus (EP) is a major BG output nucleus that contains a population of GABA/glutamate cotransmitting neurons (EP) that specifically target the lateral habenula (LHb) and whose function in behavior remains mysterious. Here, we use a probabilistic switching task that requires an animal to maintain flexible relationships between action selection and evaluation to examine when and how GABA/glutamate cotransmitting neurons contribute to behavior.
View Article and Find Full Text PDFCortical interneurons play an important role in mediating the juvenile critical period for ocular dominance plasticity in the mouse primary visual cortex. Previously, we showed that transplantation of cortical interneurons derived from the medial ganglionic eminence (MGE) opens a robust period of ocular dominance plasticity 33-35 days after transplantation into neonatal host visual cortex. The plasticity can be induced by transplanting either PV or SST MGE-derived cortical interneurons; it requires transplanted interneurons to express the vesicular GABAergic transporter; and it is manifested by changes to the host visual circuit.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:
Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.
The medial habenula (MHb)-interpeduncular nucleus (IPN) pathway plays an important role in information transferring between the forebrain and the midbrain. The MHb-IPN pathway has been implicated in the regulation of fear behavior and nicotine addiction. The synapses between the ventral MHb and the IPN show a unique property, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!